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Statistics literature in the social, behavioral, and biomedical sciences typically stress the importance of power 
analysis. Patient Reported Outcomes (PRO) such as quality of life and other perceived health measures (pain, 
fatigue, stress,...) are increasingly used as important health outcomes in clinical trials or in epidemiological 
studies. They cannot be directly observed nor measured as other clinical or biological data and they are often 
collected through questionnaires with binary or polytomous items. The Rasch model is the well known model in 
the item response theory (IRT)  for binary data. The article proposes an approach to evaluate the statistical power 
of the time effect for the longitudinal Rasch model with two time points. The performance of this  method is 
compared to the one obtained by simulation study. Finally, the proposed approach is illustrated on one subscale 
of the SF-36 questionnaire.
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Introduction

Patient Reported Outcomes (PRO) such as 
quality of life and other perceived health mea-
sures (pain, fatigue, stress,...) are increasingly 
used as important health outcomes in clinical 
trials or in epidemiological studies. They cannot 
be directly observed nor measured as other clini-
cal or biological data and they are often collected 
through questionnaires with binary or polytomous 
items. Item response theory (IRT) models enable 
to model relationship between observed and latent 
traits (latent variables) where the probability of 
answering to each item is modelled as a function 
of the latent trait and item parameters. Two main 
statistical approaches can be used to analyze PRO 
data: classical test theory (CTT) based on ob-
served scores and IRT models. The Rasch model 
(Rasch, 1960) is the most well known used for 
binary responses.

The class of psychometric models pre-
sented by Georg Rasch (Rasch 1960, 1961) has 
gained considerable interest and has stimulated 
an impressive amount of research on statistical 
models in the social and behavioral sciences. The 
impact of Rasch’s work on modern test theory is 
documented in several monographs which sum-
marize current developement in the mathematical 
modeling of test data as well as new perspective 
in the application of test models to social sci-
ence issues (e.g., Kook and Varni (2008), Catz, 
Itzkovich, Tesio, Biering-Sorensen et al. (2007), 
Smith, Wright, Rush, Stark, Velikova and Selby 
(2006), Van der Linden and Hambleton (1997), 
Fischer and Molenaar (1995)). 

There are many situations in which one is 
interested in investigating, for the same individu-
als, their change in a construct over time. It could 
be a psychologist who is interested in whether 
or not their patients symptoms of depression are 
dissipating with therapy, or an educator who is in-
terested in the extent to which material is learned 
and retained by their students. A sociologist may 
be interested in the stability of one’s attitudes with 
age or an administrator in higher education may 
be curious as to whether or not college students 

gain knowledge as a result of participation in a 
general education curriculum. To investigate such 
issues, typically a scale or test is administered to 
the same individuals over multiple time points. 
Such data can be modelled with the longitudinal 
Rasch model which comprises repeated observa-
tions of the same dichotomous items and the same 
sample of patients at different occasions. 

Statistics literature in the social, behavioral, 
and biomedical sciences typically stress the im-
portance of power analysis. By definition, the 
power of a statistical test is the probability that its 
null hypothesis (H0) will be rejected given that it 
is in fact false. Obviously, significance tests that 
lack statistical power are of limited use because 
they cannot reliably discriminate between the 
credibility of the H0  assumption and its nonrejec-
tion due to a lack of power. 

For cross-sectional studies comparing two 
groups, Hardouin, Amri, Feddag and Sebille 
(2012) proposed the Raschpower procedure for 
the Rasch model to evaluate the power of the 
test of group effect. The power for detecting a 
prespecified group effect is determined for a given 
sample size, inter individual variability (variance 
of the latent trait) at level a (Julious, 2009; Chow, 
2011). The aim of this paper is the extension of 
this work to the evaluation of the power on the test 
for time effect for the longitudinal Rasch model. 

The outline of the paper is as follows. We 
firsly present the longitudinal Rasch model for 
binary data. Then the methodology for the evalu-
ation of the power for the test of time effect is 
given. This approach is compared to the simula-
tion one by using a simulation study. An example 
of real data from one dimension of the SF-36 
questionnaire is presented. We finally conclude 
in the last section. 

The Model

We consider binary responses of a question-
naire which is administered to the same subjects at 
various occasions t,t = 1,¼,T. In this framework, 
the responses are longitudinally correlated.

Let’s consider a sample of N independent 
(TJ ́  1) random multivariate binary observations
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( )1 , , ,T
i i iY Y Y¢ ¢ ¢=  i = 1,¼,N,

where 
J is the number of items, 

( )1 , , ,T
i i iY Y Y¢ ¢ ¢=   is the response vector of 

individual i to the questionnaire at time t, and 
t

ijY  is the binary variable response of indi-
vidual i to item j at time t,t = 1,¼,T.
Let Y = (Y1,¼,YN) be the vector of the vari-

ables, t
iq  the latent trait associated with subject 

i at time t and ( )1, T
i i iq = q q  be the multidi-

mensional latent trait for subject i. We denote 
by y a realization of the random variable Y. The 
longitudinal mixed Rasch model which has been 
considered by Feddag and Mesbah (2005), and 
Feddag and Bacci (2009), satisfies the following 
assumptions:

For all i, j, t; i = 1,¼,N; j = 1,¼,J; t = 1,¼,T, 
the probability distribution of the random variable 

t
ijY  is given by:
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For a positive response, say t
ijY  = 1, the prob-

ability defined by equation (1) is equal to:
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This is the definition of the classical Rasch model.
Given the latent trait qi, i = 1,¼,N, we have 

the conditional independence defined by:
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where dj is the item difficulty parameter associated 
to item j and d (d1,¼,dJ). 

The latent traits q1,¼,qN , are independent and 
identically normally distributed with mean vector 
m = (mt)¢, t = 1,...,T and covariance matrix (w) = 
(sjl), j, l = 1,¼,T, where w is the vector parameter. 

The model as formulated above is not iden-

tifiable, so some suitable restrictions have to be 
imposed. The classical constraint we made on the 
parameters is m1 = 0.

We are interested in estimating the mean 
m = (m1,¼, mT)¢ where the item difficulty param-
eters d = (d1,¼, dJ) and the covariance matrix S(w) 
are considered as fixed. The marginal likelihood 
for the parameter m is given by:
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is the multivariate normal density with mean m 
and covariance matrix S(w).

From now on, we consider only two time 
points in this model (T = 2), with the mean of 
the distribution of the latent variables given by 
m = (m1, m2)¢ and its covariance matrix supposed 
to be equal to

( ) 1 ,
1

æ ör÷ç= r = ÷ç ÷ç ÷rè øå å
where r is the correlation between the two latent 
variables. 

The main objective is to determine the power 
for detecting a given time effect g = m2 – m1, as-
suming an expected correlation between the two 
latent variables r, given the sample size N. To do 
so, we also need the expected variance of g. This 
goal is reached using two different approaches: 
The proposed method, which is based on an ex-
pected sample constructed from the 22J possible 
profiles of responses, and a simulation approach. 
We present in details the methodolgy developed 
in the following section. 

Methodology
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Let X = (x(p)) the matrix of dimension 22J ́  2J, 
where
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is the pth binary response’s pattern associated to 
the longitudinal Rasch model with J items and 2 
time points. From the model defined before, the 
probability of responding to x(p)is given by:
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This integral is approximated by Gauss-Hermite 
quadrature detailed as follows:

Gauss-Hermite quadrature

The probability given by (4) could be ex-
pressed by: 
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where q*
p = qp – m.

We have used the Gauss Hermite quadrature 
by the standardizing transformation in the form 
q*

p = CZ, where C is the lower triangular Cholesky 
factor for S(S = CC)¢ and Z is the standardized 
multivariate normally distributed random vari-
able. Then the transformed version of the integral 
involved in (5) takes the form:
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Hence this integral is approximated by:
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are Gauss-Hermite quadrature nodes and weights, 
respectively. The accuracy of the approximation 
depends in the first place on the number of nodes 

m and on the proximity of h(.) to a polynomial of 
degree 2m – 1.

Expected sample

The expected frequency np for each pattern 
p is determined as follows:

First we evaluate *
pn  = floor(N ´ pp) with 

floor(x) = n if n £ x < n + 1, where n is an inte-
ger. Then we calculate the number of unaffected 
frequencies N* = N – Sp 

*
pn  and thereafter we 

compute the residual probabilities *
pp  = pp – *

pn
/N. Then the unaffected frequencies are distrib-
uted among all the N* pattern having the greatest 
values of the residual probabilities *

pp  where we 
add 1 to the frequency. Thus np – *

pn  + 1 for these 
unaffected frequencies and np – *

pn  for the others. 
Hence we construct the expected sample with 
size N, where each pattern p is repeated np times 
(p = 1,¼,22J). 

This procedure named GH is similar to the 
one proposed by Hardouin et al. (2012) for the 
classical Rasch model but is faced with the prob-
lem of the number of possible reponses patterns 
22J with large number of items J. For example, 
for 10 items the number of response patterns is 
more than one million, so we are faced to com-
putational difficulties in creating the expected 
sample. Thereafter, an alternative method to GH 
is proposed and is named POPULATION method. 

In this POPULATION method, a large 
dataset with n individuals and 2J items is simu-
lated according to the longitudinal Rasch model 
defined above, where the probabilities pp are 
approximated by GH only for the most frequent 
P responses patterns in this dataset. In our case, 
we use n = 106 and P = 2N where N is the fixed 
number of individuals. 

Once this expected dataset is created, it is 
analyzed by the longitudinal Rasch model, where 
the difficulty items parameters and covariance 
matrix between the two latent variables are fixed 
to the expected values. The variance of the dif-
ference between the two means g = m2 – m1 is 
approximated using the Cramer-Rao bound. The 
Wald test and the power of this estimation are 
described in the next section. 
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Evaluation of the power of the Wald test

This difference between means g can be 
tested by the Wald test (see Greenland (1983), 
Hardouin et al. (2012)). We assume the case of 
typical null hypothesis that implies that there is no 
difference between means at the two time points. 
This test is performed on the two hypotheses: H0: 
g = 0 and H0:g ¹ 0, and the statistic test defined by

( )( )1/2 ,
Var

g

g

where Var(g)is the variance of g. The null hypoth-
esis is rejected at level a if 

( )( ) 1 /21/2
ˆ| | ,
ˆ

z
Var

a
g

g
->

where z1–a/2 is the quantile of the cumulative stan-
dard normal distribution function, ĝ  and Var( ĝ )
are respectively the estimate of g and its variance. 
The expected power of this test which is based on 
the Cramer-Rao bound is evaluated as follows:
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where f is the cumulative standard normal dis-
tribution. 

Assuming g > 0, the second part of the right 
hand side of this equation is close to 0, thus this 
power is approximated as follows:
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Simulation study

A simulation study has been conducted and 
the different results including the estimate of 
the variance of g and the statistical power are 
compared to those obtained from the proposed 
approach. The different parameters considered 
in this study which is based on 1000 datasets for 
each case are as follows:
•	 The number of individuals N = 50, 100, 200, 

300 and 500.

•	 The number of items J = 5, 10 where the items 
difficulties are fixed as d = (–1,–0.5,0,0.5,1) 
and d = (–2,–1.5,–1,–0.5,0,0.5,1,1.5,2).

•	 Three values of the mean m: (0,0.2), (0,0.5), 
(0,0.8). Hence the different values of g are: 
0.2, 0.5 and 0.8.

•	 Three values of r: 0.4, 0.7 and 0.9.

Estimation of the power

The estimation of the parameter g using 
simulated data is obtained by the maximization 
of the marginal likelihood given by (3), where 
the integral of dimension 2 is approximated by 
Gauss-Hermite quadrature. The estimate of its 
variance is obtained, then we deduce the signifi-
cance of the Wald test under H1 for this dataset. 
Hence, the power estimate denoted by 1 – bS is 
the rate of significant Wald tests under H1 over the 
M simulated datasets. This approach is compared 
to the proposed one described above. 

Results

The estimation of Var( ĝ ) and the statistical 
power of the Wald test obtained by these two 
approaches are given in Tables 1-3 respectively 
for r: 0.4, 0.7 and 0.9. These two quantities are 
denoted by VarCR( ĝ ) and (1 – b̂CR)for the pro-
posed approach and by VarS( ĝ ) and (1 – bS)for 
the simulation method. 

As shown in Tables 1-3, the values VarS( ĝ ) 
and VarCR( ĝ ) decreases as N, J and r increase and 
remain stable for all the values of g. Hence the 
power follows the same trend. It increases with 
N, J and r as expected with g. 

With N = 50, J = 5, 10 and for the three 
values of r, VarCR( ĝ ), are greater than VarS( ĝ ), 
so with this approach the variances are largely 
estimated. This large estimation of the variance 
leads to a lower estimate of the power compared 
to the simulation approach. In this case the largest 
difference between the powers is equal to 9.5% 
and it correponds to g = 0.5, J = 10 and r = 0.4.

With N = 100, and for all the cases consid-
ered, VarCR( ĝ )are greater or equal than VarS( ĝ
)and the largest difference between the powers 
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is equal to 0.024, which corresponds to g = 0.2, 
J = 10 and r = 0.7.

For the three other sample sizes, the esti-
mated VarCR( ĝ ) are very close to those obtained 
by simulation. They follow the same trend than 
those obtained by simulation. They decrease 
with N, J and r remain stable for all values of g. 
For these cases, the difference between the two 
powers is negligible, so the two methods provide 
similar results.

Regarding these results, we can say that the 
proposed method provides a reliable estimation 

of the power for the test on the time effect even 
for moderate sample sizes, say N equal to 100.

Example

The study deals with the prospective evalua-
tion of quality of life and nonspecific symptoms 
before and after cure of primary hyperparathy-
roidism (Caillard, Sebag, Mathonnet, Gibelin, 
Brunaud, Loudot et al., 2007).

This prospective study, which took place 
from November 2007 to June 2011 at the uni-
versity hospital of Nantes includes only cured 

Table 1
Estimates of Var( ĝ) and the power 1-β obtained with the proposed method and using 
simulation method for ρ = 0.4
	 N	 J	 True g	 VarCR( ĝ )	 1- b̂CR	 VarS( ĝ )	 1-bS

	 50		  0.2	 0.041	 0.165	 0.040	 0.172
		  5	 0.5	 0.044	 0.667	 0.040	 0.724
			   0.8	 0.047	 0.957	 0.042	 0.977
			   0.2	 0.031	 0.204	 0.030	 0.212
		  10	 0.5	 0.038	 0.730	 0.030	 0.825
			   0.8	 0.043	 0.970	 0.031	 0.996
	 100		  0.2	 0.020	 0.290	 0.020	 0.290
		  5	 0.5	 0.021	 0.932	 0.020	 0.937
			   0.8	 0.022	 1.000	 0.021	 1.000
			   0.2	 0.015	 0.362	 0.015	 0.373
		  10	 0.5	 0.017	 0.968	 0.015	 0.989
			   0.8	 0.020	 1.000	 0.015	 1.000
	 200		  0.2	 0.010	 0.516	 0.010	 0.507
		  5	 0.5	 0.010	 0.999	 0.010	 1.000
			   0.8	 0.011	 1.000	 0.010	 1.000
			   0.2	 0.008	 0.624	 0.007	 0.641
		  10	 0.5	 0.008	 1.000	 0.008	 1.000
			   0.8	 0.009	 1.000	 0.008	 1.000
	 300		  0.2	 0.007	 0.691	 0.007	 0.682
		  5	 0.5	 0.007	 1.000	 0.007	 1.000
			   0.8	 0.007	 1.000	 0.007	 1.000
			   0.2	 0.005	 0.798	 0.005	 0.802
		  10	 0.5	 0.005	 1.000	 0.005	 1.000
			   0.8	 0.006	 1.000	 0.005	 1.000
	 500		  0.2	 0.004	 0.887	 0.004	 0.894
		  5	 0.5	 0.004	 1.000	 0.004	 1.000
			   0.8	 0.004	 1.000	 0.004	 1.000
			   0.2	 0.003	 0.952	 0.003	 0.963
		  10	 0.5	 0.003	 1.000	 0.003	 1.000
			   0.8 	 0.003	 1.000	 0.003	 1.000
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patients. All patients were given preoperative 
and postoperative French version of the SF-36 
questionnaire (Leplège, Ecosse, Pouchot, Coste 
and Perneger, 2001) at 3, 6 and 12 months to 
evaluate quality of life and nonspecific symptoms. 

The proposed approach is illustrated on the 
Role Physical (RP) dimension of this SF-36 ques-
tionnaire at the first two time points, where 140 
patients answered to this dimension. It contains 
four dichotomous items given as follows:
1.	 Cut down the amount of time you spent on 

work or other activities

2.	 Accomplished less than you would like
3.	 Were limited in the kind of work or other 

activities
4.	 Had difficulty performing the work or other 

activities (for example, it took extra effort)
From the longitudinal Rasch model, the 

difficulty item parameters are estimated as d̂ = 
(–0.715, 1.149, –0.179, 0.155), the time effect 
as 2m̂ =1.589 and the covariance matrix of the 
latent traits is estimated as S = (11.167, 9.027, 

Table 2
Estimates of Var( ĝ) and the power 1-β obtained with the proposed method and using 
simulation method for ρ = 0.7
	 N	 J	 True g	 VarCR( ĝ )	 1- b̂CR	 VarS( ĝ )	 1-bS

	 50		  0.2	 0.037	 0.177	    0.036	 0.179
		  5	 0.5	 0.040	 0.706	    0.037	 0.742
			   0.8	 0.045	 0.964	 0.038	 0.987
			   0.2	 0.027	 0.229	 0.026	 0.232
		  10	 0.5	 0.032	 0.803	 0.026	 0.883
			   0.8	 0.037	 0.987	 0.027	 0.999
	 100		  0.2	 0.019	 0.312	 0.018	 0.317
		  5	 0.5	 0.019	 0.949	 0.019	 0.960
			   0.8	 0.021	 1.000	 0.019	 1.000
			   0.2	 0.013	 0.410	 0.013	 0.434
		  10	 0.5	 0.015	 0.984	 0.013	 0.994
			   0.8	 0.017	 1.000	 0.013	 1.000
	 200		  0.2	 0.009	 0.551	 0.009	 0.546
		  5	 0.5	 0.009	 0.999	 0.010	 1.000
			   0.8	 0.010	 1.000	 0.010	 1.000
			   0.2	 0.007	 0.691	 0.006	 0.670
		  10	 0.5	 0.007	 1.000	 0.007	 1.000
			   0.8	 0.008	 1.000	 0.007	 1.000
	 300		  0.2	 0.006	 0.726	 0.006	 0.686
		  5	 0.5	 0.006	 1.000	 0.006	 1.000
			   0.8	 0.007	 1.000	 0.006	 1.000
			   0.2	 0.004	 0.854	 0.004	 0.858
		  10	 0.5	 0.005	 1.000	 0.004	 1.000
			   0.8	 0.005	 1.000	 0.004	 1.000
	 500		  0.2	 0.004	 0.912	 0.004	 0.927
		  5	 0.5	 0.004	 1.000	 0.004	 1.000
			   0.8	 0.004	 1.000	 0.004	 1.000
			   0.2	 0.003	 0.974	 0.003	 0.979
		  10	 0.5	 0.003	 1.000	 0.003	 1.000
			   0.8	 0.003	 1.000	 0.003	 1.000
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9.127, 17.896). We deduce that the two latent 
variables are highly correlated with correlation 
equal to 0.638. 

The Rasch power procedure under Stata 
defined by Hardouin et al. (2012) is extended to 
the longitudinal Rasch model. 

An example of syntax of this procedure 
and its outputs are given in Figure 1. With these 
estimates, the proposed approach evaluates the 
difference between means at 1.71 its variance at 
0.0822 and the power using equation (8) is equal 
to 0.9998. We note that the large estimate of the 

covariance matrix is due to the considerable 
variability between patients. With this estimated 
power, the test reliably discriminate between H0 
and the alternative hypothesis H1.

Discussion

In this paper we have proposed a power 
analysis on the time effect for the longitudinal 
Rasch model which is an extension of the one 
proposed by Hardouin et al. (2012) for the Rasch 
model with two groups. It estimates the power of 
the Wald test for the difference between the two 

Table 3
Estimates of Var( ĝ) and the power 1-β obtained with the proposed method and using 
simulation method for ρ = 0.9
	 N	 J	 True g	 VarCR( ĝ )	 1- b̂CR	 VarS( ĝ )	 1-bS

	 50		  0.2	 0.034	 0.188	    0.033	 0.191
		  5	 0.5	 0.037	 0.741	    0.034	 0.773
			   0.8	 0.040	 0.979	 0.035	 0.994
			   0.2	 0.023	 0.264	 0.022	 0.292
		  10	 0.5	 0.027	 0.863	 0.022	 0.918
			   0.8	 0.030	 0.996	 0.023	 1.000
	 100		  0.2	 0.017	 0.335	 0.017	 0.357
		  5	 0.5	 0.018	 0.964	 0.017	 0.972
			   0.8	 0.019	 1.000	 0.018	 1.000
			   0.2	 0.011	 0.473	 0.011	 0.481
		  10	 0.5	 0.012	 0.994	 0.011	 0.996
			   0.8	 0.014	 1.000	 0.011	 1.000
	 200		  0.2	 0.008	 0.587	 0.008	 0.614
		  5	 0.5	 0.009	 1.000	 0.008	 1.000
			   0.8	 0.009	 1.000	 0.009	 1.000
			   0.2	 0.006	 0.763	 0.005	 0.784
		  10	 0.5	 0.006	 1.000	 0.005	 1.000
			   0.8	 0.007	 1.000	 0.006	 1.000
	 300		  0.2	 0.006	 0.765	 0.006	 0.774
		  5	 0.5	 0.006	 1.000	 0.006	 1.000
			   0.8	 0.006	 1.000	 0.006	 1.000
			   0.2	 0.004	 0.908	 0.004	 0.908
		  10	 0.5	 0.004	 1.000	 0.004	 1.000
			   0.8	 0.004	 1.000	 0.004	 1.000
	 500		  0.2	 0.003	 0.934	 0.003	 0.927
		  5	 0.5	 0.003	 1.000	 0.003	 1.000
			   0.8	 0.004	 1.000	 0.004	 1.000
			   0.2	 0.002	 0.989	 0.002	 0.989
		  10	 0.5	 0.002	 1.000	 0.002	 1.000
			   0.8	 0.002	 1.000	 0.002	 1.000



	 Power Analysis on the Time Effect	 9

matrix matdiff=(-0.715,1.149,-0.179,0.155)
matrix matvar=(11.167,9.027 \ 9.027,17.896)
raschpower, longitudinal n0(140) gamma(1.589) diff(matdiff) var(matvar)

Method: GH
Number of individuals at each time: 140

Time effect: 1.589

Variance matrix of the latent trait: 
symmetric matvar[2,2]
      c1          c2
r1  11.167
r2   9.027      17.896

Number of items: 4

Difficulties parameters of the items: 
         item1   item2   item3   item4
delta_1  -.715   1.149   -.179    .155

Number of studied response’s patterns: 256
10%..20%..30%..40%..50%..60%..70%..80%..90%..100%
-----------------------------------------------------------------------------
                                               Estimation with the 
                                       Cramer-Rao bound    classical formula
----------------------------------------------------------------------------
Estimated value of the time effect            1.71
Estimation of the s.e. of the time effect     0.29
Estimation of the variance of the time effect 0.0822
Estimation of the power                       0.9998           0.9925
Number of patients for a power of 99.98%     140/140        52.06/ 52.06
Ratio of the number of patients               2.69

Figure 1

means of the latent variables for two time points. 
This method involves the Gauss-Hermite 

quadrature calculations for the probabilities of the 
different patterns of responses. The expected data 
set is obtained using these approximations. When 
the number of items is small, the number of the 
possible patterns of responses is relatively mod-
erate, we recommend to use the GH approach. 
However, when the number of items is large, the 
number of possible patterns of responses becomes 
very large and in this case, the POPULATION 
approach is preferred. 

This proposed method is compared to the 
simulations and it is shown that they provide 
similar results even for moderate values of N, 
say N equal to 100. And in time running the GH 
approach is less fast than the POPULATION one 
when the number of items is relatively large. Re-
garding the different results, this proposed method 
provides a reliable estimation of the power of the 
Wald test for the difference between means. It is 
shown that the power increases as expected with 
the number of individuals, the number of items, 
the correlation between the two latent variables 
and the value of the difference between means. 

It could be interesting to extend this work to 
the same model with more than two time points 
and to the longitudinal polytomous items, which 
are modelized by the partial credit model. In this 
last case, the number of possible responses pat-
terns depends on the number of items and on the 
number of modalities per each item. 
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