
Université de Nantes

Ecole Doctorale Biologie Santé
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et les échanges extrêmement riches que nous pouvons avoir ensemble (même sans venir
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Préambule

Ce document présente ma candidature à l’Habilitation à Diriger des Recherches.

La première partie est dédiée au bilan des mes activités de recherche. Comme détaillé

dans mon Curriculum Vitae, j’ai réellement commencé le développement de modèles

originaux en Biostatistique lors de mon DEA à l’Université de Montpellier (IURC). Ce

n’était pas mon choix initial, puisque j’avais réalisé un troisième cycle professionnel avec

un DESS à l’Université de Bordeaux 2 (ISPED) quelques années plus tôt. Bien plus

éloigné, je voulais initialement être pompier et j’avais choisi un IUT Hygiène, Sécurité

et Environnement. Contrairement à l’évolution de pathologies chroniques, il semble donc

très difficile de prédire une carrière professionnelle. Cependant, mon parcours explique

mon activité de recherche plus appliquée que théorique, avec le souci d’un retour rapide

des résultats aux patients.

Dans la seconde partie, en accord avec les recommandations de rédaction de ce type

de document, j’ai choisi les 5 publications que je pense les plus représentatives de mon

activité, celles aussi qui vont conditionner le futur proche.

J’essaye toujours de conserver du temps pour mes propres développements. Cepen-

dant, le constat est que ”je” doit être remplacé par ”nous”. Il y a le ”savoir faire”, et

maintenant le ”savoir faire faire” qui n’est pas plus simple. C’est la troisième partie de ce

document, avec la description des principaux projets collaboratifs, en particulier autour

de la cohorte des patients transplantés. Ce domaine d’application offre le principal fil

conducteur de nos projets et il nous permet d’avancer en cohérence. Des projets de col-

laborations vers d’autres pathologies sont cependant en cours de construction. Je pense

que c’est le meilleur moyen pour offrir l’opportunité et l’espace aux lancements d’autres

carrières au sein de l’équipe. L’ensemble de ce troisième volet prospectif est en anglais,

en cohérence avec tous les travaux rédigés ou en cours de rédaction.
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53508 - 44035 Nantes Cedex 1 - FRANCE.
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H., Le Monies De Sagazan H., Braun L., Noël C., Pillebout E., Moal MC., Cantarell

C., Hoitsma A., Ranbant M., Testa A., Soulillou JP., Giral M. The Natural History

of Clinical Operational Tolerance After Kidney Transplantation Through Twenty-

Seven Cases. Am J Transplant. 2012 ; 12(12) :3296-307. (IF 6.394)

6. Thibault-Espitia A., Foucher Y., Danger R., Migone T., Pallier A., Castagnet

S., G-Gueguen C., Devys A., C-Gautier A., Giral M., Soulillou JP., Brouard S.

BAFF and BAFF-R Levels Are Associated With Risk of Long-Term Kidney Graft

Dysfunction and Development of Donor-Specific Antibodies. Am J Transplant.

2012 ;12(10) :2754-2762. (IF 6.394)

7. Michel L., Foucher Y., Vukusic S., Confavreux C., de Sèze J., Brassat D., Clanet

M., Clavelou P., Ouallet JC., Brochet B., Pelletier J., Labauge P., Lebrun C.,

Lepage E., Le Frere F., Jacq-Foucher M., Barriere P., Wiertlewski S., Laplaud

DA. ; Club Francophone de la Sclérose En Plaques (CFSEP).Increased risk of

multiple sclerosis relapse after in vitro fertilisation. J Neurol Neurosurg Psychiatry.

2012 ;83(8) :796-802. (IF 4.764)

8. Foucher Y., Giral M., Soulillou JP., Daurès JP. Cut-off estimation and medical

decision making based on a continuous prognostic factor : the prediction of kidney

graft failure. Int J Biostat. 2012 ; 6 ;8(1). (IF 1.284)

9. Foucher Y., Combescure C., Ashton-Chess J., Giral M. Prognostic markers : data

misinterpretation often leads to overoptimistic conclusions. Am J Transplant. 2012

Apr ;12(4) :1060-1. (IF 6.394)

10. Degauque N., Boeffard F., Foucher Y., Ballet C., Brouard S., Soulillou J.P. The

blood of healthy individuals exhibits CD8 T cells with a highly altered TCR Vb

repertoire but with an unmodified phenotype. PLoS One. 2011 ;6(6) :e21240. (IF

4.092)

11. Racapé M., Duong Van Huyen J.P., Danger R., Giral M., Bleicher F., Foucher

Y., Pallier A., Pilet P., Tafelmeyer P., Ashton-Chess J., Dugast E., Pettré S.,

Charreau B., Soulillou J.P., Brouard S. The involvement of SMILE/TMTC3 in

endoplasmic reticulum stress response. PLoS One. 2011 ;6(5) :e19321. (IF 4.092)
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12. Brouard S., Le Bars A., Dufay A., Gosselin M., Foucher Y., Guillet M., Cesbron-

Gautier A., Thervet E., Legendre C., Dugast E., Pallier A., Guillot-Gueguen C.,

Lagoutte L., Evanno G., Giral M., Soulillou J.P. Identification of a gene expression

profile associated with operational tolerance among a selected group of stable

kidney transplant patients. Transpl Int. 2011 Jun ;24(6) :536-47. (IF 2.921)

13. Foucher Y., Giral M., Soulillou J.P., Daures J.P. Time-dependent ROC analysis

for a three-class prognostic with application to kidney transplantation. Stat Med.

2010 Dec 30 ;29(30) :3079-87. (IF 2.328)

14. Foucher Y., Daguin P., Akl A., Kessler M., Ladrière M., Legendre C., Kreis H.,

Rostaing L., Kamar N., Mourad G., Garrigue V., Bayle F., de Ligny B.H., Büchler

M., Meier C., Daurès J.P., Soulillou J.P., Giral M. A clinical scoring system highly

predictive of long-term kidney graft survival.Kidney Int. 2010 Dec ;78(12) :1288-94.

(IF 6.105)

15. Giral M., Foucher Y., Labrune Y., Karam G, Kessler M., Hurault de Ligny B.,

Büchler B., Bayle F., Meyer C., Daguin P., Soulillou JP. Kidney and recipient

weight incompatibility : a cause of early proteinuria and reduced long-term graft

survival. Journal of the American Society of Nephrology. J Am Soc Nephrol. 2010

Jun ;21(6) :1022-9. (IF 8.288)

16. Ashton-Chess J., Le Mai H., Jovanovic V., Renaudin K., Foucher Y., Giral M.,

Moreau A., Dugast E., Mengel M., Racape M., Danger R., Usal C., Smit H., Guillet

M., Gwinner W., Le Berre L., Dantal J., Soulillou JP., Brouard S. Immunoprotea-

some beta subunit 10 is increased in chronic antibody-mediated rejection. Kidney

Int. 2010 May ;77(10) :880-90. (IF 6.105)

17. Foucher Y., Giral M., Soulillou JP., Daures JP. A flexible semi-Markov mo-

del for interval-censored data and goodness-of-fit testing. Stat Methods Med Res.

2010 ;19(2) :127-45. (IF 1.768)

18. Rousseau V., Foucher Y., Giral M., Soulillou J.P., Daurès J.P. Informative censo-

ring in a multiplicative relative survival model : application for kidney transplant

recipients. JP Journal of Biostatistics. 2009 ;3(3) :195-214. (missing IF)

19. Bruneau S., Le Berre L., Hervé C., Valanciuté A., Kamal M., Naulet J., Tesson L.,

Foucher Y., Soulillou JP., Sahali D., Dantal J. Potential role of soluble ST2 pro-

tein in idiopathic nephrotic syndrome recurrence following kidney transplantation.

American journal of kidney diseases. 2009 ;54(3) :522-32. (IF 5.152)

20. Ashton-Chess J., Dugast E., Colvin R.B., Giral M., Foucher Y., Moreau A.,

Renaudin K., Braud C., Devys A., Brouard S., Soulillou J.P. Regulatory, effector,

and cytotoxic T cell profiles in long-term kidney transplant patients. Journal of

the American Society of Nephrology. 2009 ;20(5) :1113-22. (7.689)
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21. Foucher Y., Daguin P, Kessler M, Ladrière M, Legendre C, Kreis H, Durand D,

Laveyssiere L, Mourad G, Garrigue V, Daurès JP, Soulillou JP., Giral M. How to

evaluate the long-term prognostic capacity of pre-graft variables in transplanta-

tion ? Clinical Transplant. 2008 :113-8. (missing IF)

22. Asthon-chess J., Giral M., Mengel M., Renaudin K., Foucher Y., Gwinner W.,

Braud C., Dugast E., Quillard T., Thebault P., Chiffoleau E., Braudeau C., Char-

reau B., Soulillou J.P., Brouard S. Tribbles-1 as a Novel Biomarker of Chronic

Antibody-Mediated Rejection. Journal of the American Society of Nephrology.

2008 ;19(6) :1116-27. (IF 7.505)

23. Castelli C., Combescure C., Foucher Y., Daurès J.P. Cost-effectiveness analysis

in colo-rectal cancer using a semi-Markov model. Statistics in Medicine. 2007 Dec

30 ;26(30) :5557-71. (IF 1.547)

24. Foucher Y., Giral M., Soulillou J.P., Daurès J.P. A semi-Markov model for mul-

tistate and interval-censored data with multiple terminal events. Application in

renal transplantation. Statistics in Medicine. 2007 ; 26(30) :5381-93. (IF 1.547)

25. Mathieu E., Foucher Y., Dellamonica P., Daurès J.P. A Parametric and Non

Homogeneous Semi-Markov Process for HIV control. Methodology and Computing

in Applied Probability. 2007 ;3 :389-397. (IF 0.753)

26. Giral M., Bertola J.P., Foucher Y., Villers D., Bironneau E., Blanloeil Y., Karam

G., Daguin P., Lerat L., Soulillou J.P. Effect of brain-dead donor resuscitation

on delayed graft function : results of a monocentric analysis. Transplantation.

2007 ;83(9) :1174-81. (IF 3.641)

27. Foucher Y., Saint-Pierre P., Puglièse P., Daurès J.P. A Semi-Markov Frailty

Model for Multistate Survival Data : Illustration on HIV Disease. Far East Journal

of Theoretical Statistics, 2006 ;19 :185-201. (missing IF)

28. Foucher Y., Mathieu E., Saint-Pierre P., Durand J.F., Daurès J.P. A semi-Markov

model based on Generalized Weibull distribution with an illustration for HIV di-

sease. Biometrical Journal. 2005 ;47(6) :825-33. (IF 0.768)

29. Giral M., NGuyen J.M., Karam G., Kessler M., Hurault de Ligny B., Buchler M.,

Bayle F., Meyer C., Foucher Y., Martin M.L., Daguin P., Soulillou J.P. Impact of

graft mass in the clinical outcome of kidney transplants. Journal of the American

Society of Nephrology. 2005 ;16(1) :261-8. (IF 7.240)

1.3.2 Publications nationales

1. Arnaud I., Elkouri D., N’Guyen JM., Foucher Y., Karam G., Lepage JY., Billard

M., Potel G., Lombrail P. Local guidelines and quality of antibiotic treatment
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in urinary tract infections : a clinical audit in two departments of a university

hospital. Presse Med. 2005 Dec 17 ;34 :1697-702. (IF 0.381)

2. Arnaud I., Elkouri D., N’Guyen JM., Foucher Y., Karam G., Lepage JY., Billard

M., Potel G., Lombrail P. Adequate prescription of antibiotic therapy for urinary

tract infections in hospital : identifying and correcting non-observance of guide-

lines. Med Mal Infect. 2005 Mar ;35(3) :141-8. (IF 0.188)

1.3.3 Conférences internationales invitées

1. Dantan E., Lorent M., Foucher Y. Confusing correlation and prediction : a simple

approach to evaluate marker accuracy for predicting time-to-event. 39th Annual

Meeting of the European Group for Blood and Marrow Transplantation. London

- April 2013.

2. Dantan E., Combescure C., Ashton-Chess J., Lorent M., Giral M., Foucher Y.

How to evaluate the prognostic capacity of surrogate makers ? A methodological

review in transplantation literature. Congress of the British Transplant Society -

Glasgow 2012.

3. Foucher Y. Modern models in time-to-event analysis. Workshop at Ilam Univer-

sity of Medical Sciences (Iran). April 2010.

1.3.4 Conférences nationales invitées

1. Foucher Y. The modeling of the evolution of kidney transplant recipients Ap-

plications to the DIVAT cohort. International Society for Clinical Biostatistics -

Montpellier (France), August 2009.

2. Foucher Y. Apport des modèles Markoviens dans la modélisation des patients en

addictologie. Journées scientifiques de l’Université de Nantes. (France) June 2009.

3. Foucher Y. Développements autour des courbes ROC dépendantes du temps.

Rencontres méthodologiques de la Direction Interrégionale de la Recherche Cli-

nique (DIRC) Sud-Est, Marseille (France), March 2009.

1.3.5 Présentations orales

1. Lorent M., Giral M., Foucher Y. Net time-dependent ROC curves : a new method

for evaluating the accuracy of a marker to predict mortality related to end-stage

renal disease in kidney transplant recipients. Francophone Society of Transplanta-

tion (Nantes), 2012.
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2. Lino-Daniel M., Foucher Y., Daguin P., Phelizot C., Hourmant M. Identification

des facteurs de risque de progression de l’insuffisance rénale dans une cohorte de

patients ayant une clairance de créatinine comprise entre 30 et 60 ml/min. 14ème

réunion commune SFD & SN. Genevia - 2013.

3. Trébern-Launay K., Giral M., Foucher Y. A multiplicative hazard regression

model to compare the effect of factors associated with graft failure risk between

first and second renal transplant. International Society for Clinical Biostatistics

(Bergen), 2012.

4. Lorent M., Giral M., Foucher Y. Relative ROC curves : a solution for evaluating

the accuracy of a marker to predict the cause-specific mortality. International

Society for Clinical Biostatistics (Bergen), 2012.

5. Hegner B., Giral M., Dufay A., Van Huyen J.P.D., Foucher Y., Renaudin K.,

Moreau A., Philippe A., Dechend R., Heidecke H., Cesbron A., Devys A., Soulil-

lou J. P. Pre-transplant sensitization against angiotensin II Type 1 receptor is a

novel independent risk factor of antibody-mediated tejection. Transpl. Int. Vol :

24 Suppl. : 3 Pages : 30-30 : Oct 2011.

6. Akl A, Giral M, Rousseau V, Kessler M, Ladriere M, Legendre C, Kreis H, Ros-

taing L, Kamar N, Mourad G, Garrigue V, Daures JP, Soulillou JP, Foucher Y.

A relative survival model to assess the specific mortality related to renal trans-

plantation. Transpl. Int. Vol : 24 Suppl. : 2 Pages : 204-204. Sep 2011. European

Society for Organ Transplantation (ESOT) Congress.

7. Trébern-Launay K, Foucher Y., Giral M., Legendre C., Kessler M., Kamar N.,

Garrigue V., Morelon E., Dantal J. Poor outcome of second kidney transplanta-

tion : a delayed event. Transpl. Int. Vol : 24 Suppl. : 2 Pages : 62-63. Sep 2011.

ESOT Congress.

8. Mai H.L., Giral M., Launay K., Foucher Y., Garrigue V., Legendre C., Kamar

N., Kessler M., Morelon E., Hourmant M., Brouard S., Soulillou, J.P. Kidney after

Nonrenal Organ Transplantation-Analysis of a 15-Year Multicenter Cohort. Am.

J. Transplant. Vol : 11 Suppl. : 2 Pages : 148-148. Apr 2011. American Transplant

Congress : Philadelphia.

9. Danger R., Lavault A., Giral M., Van Huyen J.P.D, Foucher Y., Pallier A.,

Degauque N., Soulillou, J.P., Brouard S. miR-142-5p Over-Expression in Blood

and Kidney Graft from Patients Exhibiting Chronic Antibody Mediated Rejec-

tion. Am. J. Transplant. Vol : 11 Suppl. : 2 Pages : 380-380. Apr 2011. American

Transplant Congress : Philadelphia.

10. Brouard S., Pallier A., Renaudin K., Devys A., Cesbron A., Guillot-Gueguen C.,

Foucher Y., Subra J.F., Villemain F., Legendre C., Thervet E., Bemelman F.J.,

Le Roux S., Roussey G., Orlando G., Gamier A., Jambon H., De Saeazan H.,
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Le Monies Braun L., Noel C., Pillebout E., Moal M.C., Cantarell C., Hoitsma

A., Ranbant M., Testa A., Danger R., Soulillou J.P., Giral M. Natural History of

Clinical Operational Tolerance after Kidney Transplantation. Am. J. Transplant.

Vol : 11 Suppl. : 2 Pages : 76-76. Apr 2011. American Transplant Congress :

Philadelphia.

11. Roussey G., Foucher Y., Guest G., Ranchin B., Maisin A., Novo R., Andre J.,

Cloarec S., Guyot C. Influence of Corticosteroid in Renal Transplantation.15th

Congress of the International Pediatric Nephrology Association, 2010.

12. Devys A., Lino M., Foucher Y., Mc Ilroy A., Soulillou J.P., Cesbron A., Blancho

G. Would preformed HLA antibodies detected by single antigen assay predict acute

humoral rejection or needlessly contraindicate transplantation ? 24th European

Immunogenetics and Histocompatibility Conference, 2010.

13. Michel L., Foucher Y., De Seze J., Vukusic S., Confavreux C., Brassat D., Ouallet

J., Brochet B., Wiertlewski S., Laplaud D. Increase of Relapse Rate in Patients

with Multiple Sclerosis after In-Vitro Fertilization Is Related to the Use of LHRH

Agonists : A Multicenter Retrospective Study in France. 62nd Annual Meeting of

the American-Academy-of-Neurology, 2010.

14. Victorri-Vigneau C., Foucher Y., Huet M., Guillou-Landreat M., Sebille V., Jol-

liet P. Use of an original statistical methodology to identify factors linked with a

bad observance in the opiate maintenance treatment follow up. Fundamental and

clinical pharmacology, 2009.

15. Ashton-Chess J., Dugast E., Colvin RB., Giral M., Foucher Y., Moreau A., Re-

naudin K., Braud C., Devys A., Brouard S., Soulillou JP. Regulatory, Effector, and

Cytotoxic T Cell Profiles in Long-Term Kidney Transplant Patients. 8th American

Transplant Congress (Toronto), 2009.

16. Foucher Y., Giral M., Soulillou JP., Daurès JP. Time-dependent ROC analysis for

a three-class prognostic. International Society for Clinical Biostatistics (Prague),

2009.

17. Giral M., Foucher Y., Labrune Y., Karam G., Kessler M., Hurault de Ligny B.,

Buchler M., Bayle F., Meyer C., Daguin P., Soulillou JP. Kidney and recipient

weight incompatibility : a cause of early proteinuria and reduced long-term graft

survival. American Transplant Congress. (Boston), 2009.

18. Foucher Y., Giral M., Soulillou J.P., Daurès JP. An adaptation of time-dependent

ROC curves to construct a prognosis test based on the repetition of a surrogate

marker : Application on the kidney graft failure and the creatinine clearance.

International Society for Clinical Biostatistics (Copenhaguen), 2008.

19. Giral M., Foucher Y., Daurès JP., Soulillou JP. New tool to analyse confounding
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factors in kidney graft outcome : A DIVAT data base study. American Transplant

Congress (Toronto), 2008.

20. Asthon-chess J., Jovanovic V., Foucher Y., Dugast E., Giral M., Renaudin K.,

Heslan M., Soulillou JP., Brouard S. The immunoproteasome subunit beta 10 as

a novel peripheral blood and intragraft biomarker of chronic antibody mediated

allograft rejection in clinical transplantation. American Transplant Congress (To-

ronto), 2008.

21. Allain-Launay E., Roussey-Kesler G., Guest G., Ranchin B., Maisin A., Andre

J., Cloarec S., Foucher Y., Guyot C. Pediatric renal transplantation : report

from a French pediatric database. European Society for Paediatric Nephrology.

(Montpellier), 2008.

22. Foucher Y., Soulillou JP., Daurès JP., Giral M. Longitudinal analysis of kidney

transplant recipients with multi-state model. American Transplant Congress (San

Francisco), 2007.

23. Foucher Y., Giral M., Soulillou JP., Daurès JP. A semi-Markov model for interval-

censored data and multiple events : Application to the evolution of kidney trans-

plant recipients. 27th Annual Conference of the International Society for Clinical

Biostatistics. (Genevia), 2006.

24. Castelli C., Combescure C., Foucher Y., Daurès JP. Cost-effectiveness analysis

in colorectal cancer using a semi-Markov model. 27th Annual Conference of the

International Society for Clinical Biostatistics. (Genevia), 2006.

25. Foucher Y., Giral M., Soulillou JP., Daurès JP. A semi-Markov Model with

Interval Censoring and Non-Proportional Hazards. 23th International Biometric

Conference. (Montréal), 2006.

26. Asthon-chess J., Giral M., Braud C., Baeten D., Heslan M., Chiffoleau E., Foucher

Y., Soulillou J.P., Brouard S. Tribbles homolog 1, a peripheral blood marker of

chronic rejection in clinical renal allotransplantation identified by transcriptome

profiling : role and correlation with renal histology and function. World transplant

congress, 2006.

27. Harzallah K., Frimat L., Giral M., Foucher Y., Soulillou JP., Dantal J. Induction

Therapy Is Not Associated with Increasing Risk of Cancer After Renal Transplan-

tation. The Federation of Clinical Immunology Societies (FOCIS), 2006.

28. Cuzin L., Foucher Y., Agher R., Barone M., Billaud E., Daurès JP., Dellamonica

P., Druart P., Salmi D., Puglièse P. Safe and effective switch to a triple nucleosidic

reverse transcriptase inhibitors regimen in a successfully pre-treated French HIV-

infected population. IAS Conference. 2005.

29. Mathieu E., Foucher Y., Dellamonica P., Daurès JP. Parametric and Non Ho-

mogeneous semi-Markov Process for HIV Control. Applied Stochastic Models and
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Data Analysis (ASMDA), 2005.

1.4 Logiciels

1.4.1 Packages R

R propose un langage et un environnement logiciel libre d’accès (open source) pour

les calculs statistiques et graphiques. R offre une grande variété d’outils statistiques,

auxquels peuvent s’ajouter des éléments complémentaires, appelés packages. Tous les

packages sont disponibles à l’adresse suivante : www.divat.fr/en/softwares.

ROCt Il s’agit d’un ensemble de fonctions R pour calculer des courbes ROC (Re-

ceiver Operating Characteristic) dépendantes du temps à partir de l’estimateur

de Kaplan-Meier et de celui des k plus proches voisins. Ces deux estimateurs sont

développés pour les modèles de survie traditionnels (toutes causes confondues) et

pour les modèles de survie nette (mortalité en excès liée à une pathologie).

SROCt Il s’agit d’un ensemble de fonctions R pour calculer des courbes ROC dépen-

dantes du temps à partir de données de survie agrégées, c’est à dire à partir des

courbes de survie publiées dans différents articles en fonction des niveaux d’un

marqueur.

prognosticROC L’objectif des courbes ROC pronostiques est d’évaluer les qualités

pronostiques d’un marqueur binaire en fonction des survies calculées dans chacun

des deux groupes. Contrairement aux courbes ROC dépendantes du temps, qui

sont basées sur les notions de sensibilité et de spécificité, les courbes ROC pronos-

tiques sont basées sur les valeurs prédictives, découlant directement des courbes de

survie. L’aire sous la courbe représente la probabilité que le temps de survie soit

meilleur dans un groupe que dans l’autre. Ce travail est réalisé en collaboration

avec le Dr. Christophe Combescure (Hopitaux Universitaires de Genève).

ROC632 Les biopuces peuvent être utilisées pour construire une signature pronos-

tique. Le problème principal est le sur-ajustement dû à un nombre de variables

explicatives très grand par rapport au nombre d’individus. Nous avons développé

l’estimation des courbes ROC dépendantes du temps en les adaptant à l’algorithme

de ré-échantillonnage par Bootstrap 0,632+. Cette méthode permet de corriger as-

sez efficacement la sur-estimation de l’aire sous la courbe, sous réserve d’un nombre

raisonnable de marqueurs mesurés par rapport au nombre de sujets et du taux de

censure à droite.

MetaSurv En Epidémiologie, il est maintenant assez bien reconnu qu’une courbe

de survie est plus informative qu’un ”simple” rapport de risque (hazard ratio).
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Cependant, dans les méta-analyses, la quantité la plus populaire est le rapport de

risque moyen à partir de tous les rapports observés (pondération en fonction des

intervalles de confiance). Avec ce package, nous proposons d’estimer des courbes

de survie moyennes à partir d’un ensemble de courbes de survie observées. Ce

travail est réalisé en collaboration avec le Dr. Christophe Combescure (Hopitaux

Universitaires de Genève).

MRsurv Il s’agit de fonctions R qui permettent de réaliser des modèles multiplicatifs

de survie relative en l’absence de tables de mortalité. Ce modèle permet de com-

parer l’effet de facteurs de risque entre deux groupes issus de deux échantillons

observés.

1.4.2 Calculateurs en ligne

Tous les scores prédictifs ou les développements mis en place pour l’aide à la prise

de décisions des cliniciens sont disponibles sous forme d’applications pour smartphones,

tablets et ordinateurs : www.divat.fr/en/online-calculators.

KTFS Le KTFS (Kidney Transplant Failure Score) est un indicateur composite basé

sur 8 paramètres disponibles chez tous les patients au premier anniversaire de la

greffe rénale. En entrant les valeurs des paramètres, l’application renvoie la valeur

du score et fournit une série d’interprétations.

EVALBIOM La distance entre les courbes de survie est souvent mal interprétée

en terme de capacités pronostiques. A partir de cette application, il est possible

d’entrer les effectifs à la baseline ainsi que les probabilités de survie à un certain

temps pour deux groupes de patients. Elle renvoie, pour ce temps donné, les indi-

cateurs objectivement interprétables comme la sensibilité, la spécificité, les valeurs

prédictives, etc.

DGFS Le DGFS (Delayed Graft Function Score) est un indicateur basé sur 5 va-

riables collectées en pré-greffe. Il permet d’évaluer le risque de retard au démarrage

du greffon. L’application fonctionne comme pour le KTFS.

1.5 Brevets

KTFS Ce score, calculé à un an post transplantation, permet d’évaluer le risque

d’échec de greffe (retour en dialyse) jusqu’au huitième anniversaire de la greffe.

Numéro d’enregistrement : 0959043. Titre : Method and device for determining a

risk of graft rejection.
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1.6 Financements obtenus pour des projets propres

1. Elaboration d’un score pronostique de la mortalité liée à la transplantation rénale

pour l’aide à l’allocation des greffons. Etude épidémiologique observationnelle mul-

ticentrique de la survie relative des patients transplantés rénaux en prenant en

compte une population comparable de patients dialysés en attente de transplan-

tation à partir des cohortes prospectives DIVAT et REIN (PI M. Giral, PHRC

national 2011).

2. Etude randomisée ouverte d’évaluation d’une prise en charge par TELECONSUL-

TATION versus un suivi STANDARD de patients Transplantés Rénaux en fonction

d’un score de risque précoce d’échec de greffe (PI A. Meurette, PHRC national

2011).

3. Construction d’un marqueur composite de substitution de la survie à long terme :

application à la transplantation rénale. (ANR Jeune Chercheur Jeune Chercheuse,

2010)

1.7 Etudes cliniques comme méthodologiste

De manière complémentaire au laboratoire SPHERE (EA-4275) où les chercheurs y

développent leurs propres activités de recherche, j’aide les chercheurs et les cliniciens

à construire les études adaptées à leurs objectifs, en particulier pour l’obtention de

financements. Cette activité est principalement réalisée au sein de la plateforme de

Biométrie, dirigée par le Pr. V. Sébille-Rivan, au sein de la Direction de la Recherche

Clinique et de l’Innovation (DRCI).

Voici une liste de projets ayant obtenus un financement :

1. Etude prospective, multicentrique, randomisée, ouverte et contrôlée évaluant l’in-

térêt d’un système d’oxygénation à haut débit lors de la pré oxygénation pour

l’intubation du malade en insuffisance respiratoire aigue hypoxémique (PHRC

inter-régional, 2012).

2. Performance diagnostique des signes cliniques chez les patients adultes suspects

de méningites dans les Services d’Accueil des Urgences. Etude prospective multi-

centrique (PHRC local, 2012).

3. Etude de phase 1 évaluant la tolérance du Trioxyde d’Arsenic (ATO) par voie

intraveineuse dans le Lupus Systémique (LES) évolutif (Medsenic, 2012).

4. Impact de l’absence de corticothérapie sur l’évolution de la fonction rénale et
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sur la progression de la fibrose du greffon, quantifiée par méthode numérique,

chez des patients transplantés rénaux – Etude multicentrique, randomisée, ouverte,

prospective de phase IV (Astellas, 2011).

5. Etude prospective, multicentrique, randomisée, en double-aveugle, contrôlée en

groupes parallèles, visant à évaluer la balance bénéfice-risque du sevrage progres-

sif d’un inhibiteur de la calcineurine (Tacrolimus) chez des patients transplantés

rénaux depuis plus de 4 ans et cliniquement sélectionnés (PHRC national 2010).

6. Etude prospective multicentrique ouverte d’évaluation de l’efficacité et de la sécuri-

té de la neuromodulation du système nerveux végétatif sympathique dans la prise

en charge du syndrome de vessie douloureuse (PHRC national 2009).

7. Etude prospective multicentrique génétique et physiopathologique de la dysrégul-

ation du complément au cours des pertes fœtales à répétition (PHRC régional

2009).

8. Evaluation de l’efficacité de la transplantation pancréatique par rapport au traite-

ment de base par l’insuline chez des patients diabétiques de type 1 (PHRC national

2009).

9. La validation de biomarqueurs par ProtoArrays pour la mise au point d’un test de

diagnostic de la glomérulopathie d’allogreffe et de la néphropathie chronique du

greffon rénal (ANR 2009).

10. Extension de la base DIVAT aux items chirurgicaux de la transplantation (PHRC

national 2009).

11. Performances diagnostiques de biomarqueurs mesurés à un an (TRIB1, FoxP3,

etc.) pour remplacement de la biopsie (DHOS 2008).

12. Identification de nouveaux virus sur puce olégonucléotidique panvirale chez les

patients transplantés (PHRC national 2007).
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- Chapitre 2 -

Encadrement d’étudiants

2.1 Étudiants en thèse de science

L’ensemble des étudiants inscrits en thèse sur les projets de transplantation rénale

sont dirigés par le Pr. Magali Giral. Je suis co-encadrant à hauteur de 50%.

2.1.1 Katy Trébern-Launay

Le Dr. Katy Trébern-Launay a débuté sa thèse en 2010, grâce à un soutien de la

fondation CENTAURE. L’objectif de son travail est l’étude de l’évolution des patients

greffés une seconde fois d’un rein par rapport à ceux greffés pour la première fois. C’est

aussi cette application qui motive l’utilisation originale de modèles de survie relative.

Plusieurs communications orales ont été associées à au travail de Katy Trébern-

Launay :

– Trébern-Launay K, Foucher Y., Giral M., Legendre C., Kessler M., Kamar N.,

Garrigue V., Morelon E., Dantal J. Poor outcome of second kidney transplanta-

tion : a delayed event. Transpl. Int. Vol : 24 Suppl. : 2 Pages : 62-63. Sep 2011.

ESOT Congress.

– Trébern-Launay K., Giral M., Foucher Y. A multiplicative hazard regression model

to compare the effect of factors associated with graft failure risk between first and

second renal transplant. International Society for Clinical Biostatistics (Bergen),

2012.

De plus, un premier article a été publié :

– Trébern-Launay K., Foucher Y., Giral M., Legendre C., Kreis H., Kessler M.,

21
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Ladrière M., Kamar N., Rostaing L., Garrigue V., Mourad G., Morelon E., Sou-

lillou JP., Dantal J. Poor long-term outcome in second kidney transplantation : a

delayed event. PLoS One. 2012 ; 7(10) :e47915.

Dans ce travail, nous montrons un plus mauvais pronostic des secondes greffes, cet

excès de risque apparaissant après quelques années de greffe. Avec l’amélioration de la

qualité et de l’espérance de vie des patients re-transplantés par rapport aux dialysés, il est

clair que cet excès de risque parait négligeable et ne remet pas en question la stratégie de

greffe. En revanche, pour améliorer l’allocation des greffons, il peut apparâıtre important

de comparer les profils des patients à risque. Nous développons les modèles multiplicatifs

de survie relative pour permettre une comparaison performante de ces deux populations

(voir le chapitre 11 pour plus de détails). Ce travail est soumis :

– Trébern-Launay K., Giral M., Dantal J. Foucher Y. A multiplicative-regression

model to compare the effect of factors associated with the time to graft failure

between first and second renal transplant. BMC Medical Research Methodology.

2.1.2 Marine Lorent

Marine Lorent a commencé sa thèse de science en décembre 2011. L’objectif de

son travail est de modéliser et pronostiquer la mortalité post-transplantation rénale des

receveurs. Des scores pronostiques ont déjà été publiés, comme celui de Hernandez et

al. [67]. L’originalité de son projet est de travailler sur la notion de survie nette, c’est à

dire la survie si la seule cause de décès possible est liée à la maladie (transplantation,

insuffisance rénale, etc). Pour cela, nous avons développé le concept de courbes ROC

nettes (voir le chapitre 10 pour plus de détails). Deux communications orales ont été

associées à ce travail :

– Lorent M., Giral M., Foucher Y. Net time-dependent ROC curves : a new method

for evaluating the accuracy of a marker to predict mortality related to end-stage

renal disease in kidney transplant recipients. Francophone Society of Transplan-

tation (Nantes), 2012.

– Lorent M., Giral M., Foucher Y. Relative ROC curves : a solution for evaluating

the accuracy of a marker to predict the cause-specific mortality. International

Society for Clinical Biostatistics (Bergen), 2012.

De plus, un papier est soumis :

– Lorent M., Giral M., Foucher Y. Net time-dependent ROC curves : a solution for

evaluating the accuracy of a marker to predict disease-related mortality. Statistics

in Medicine.
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L’ensemble de ce projet est financé par l’ANR CSM (Composite Surrogate Marker,

Jeunes Chercheurs et Jeunes Chercheuses, 2011).

2.1.3 Florence Gillaizeau

Florence Gillaizeau a débuté sa thèse de science en septembre 2012. L’objectif est

de poursuivre les développements sur les modèles multi-états en transplantation rénale.

Un des axes de développements est d’inclure le concept de survie nette dans ces modèles

semi-Markoviens. Son projet est financé par le PHRC national MaKiT (Mortality after

Kidney Transplantation, PROG/11/85, 2011).

Pour initier ce projet, Florence Gillaizeau a développé un premier modèle semi-

Markovien pour évaluer l’effet d’un anticorps préformé à la greffe (AT1R) sur l’évolution

du patient transplanté. Une communication orale est associée à ce travail au congrès de

la Société Française de Transplantation à Nantes en 2012. Un article est soumis :

– Gillaizeau F., Giral M., Dantan E., Dragun D., Soulillou JP., Foucher Y. Multi-

state analysis of kidney transplant recipients outcome : a semi-Markov model for

studying the role of pre-transplant sensitization against Angiotensin II Type 1

receptor. Journal de la Société Française De Statistique.

2.2 Etudiants en Master 2

2.2.1 Florent Le Borgne (Biostatistique, Bordeaux, 2012)

L’objectif de ce stage est l’étude des facteurs de risque d’un retard au démarrage du

rein greffé (Delayed Graft Function, DGF). Ce DGF est défini par le besoin d’au moins

une dialyse dans la première semaine qui suit la greffe. Au-delà de cet objectif, nous

avons proposé un score pronostique, plus simple que la référence publiée aujourd’hui

(voir la section 9.1 pour plus de détails).

2.2.2 Pascal Rigouin (Biostatistique, Bordeaux, 2010)

Pascal Rigouin a initié pour la première fois les modèles de survie relative appliqués

aux transplantés rénaux au sein de l’équipe SPHERE. La mortalité attendue était es-

timée à partir des patients du réseau SIMS-REIN en Ile de France (Pr. Paul Landais).

L’objectif était de modéliser les différences entre les facteurs de risque de mortalité

des patients en liste d’attente et ceux transplantés. Les résultats comportaient de nom-
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breuses limites, mais ce sont eux qui ont justifié le PHRC national MaKiT (PHRC,

PROG/11/85, 2011).

2.2.3 Katy Trébern-Launay (Epidémiologie, Nantes, 2009)

Pendant ce stage, Katy Trébern-Launay a initié son travail de thèse.

2.2.4 Yann Labrune (Mathématique appliquée, Vannes, 2008)

L’objet du stage était l’étude du pronostic des patients transplantés en fonction du

poids de leur rein. Yann Labrune a ainsi pu montrer un épuisement lié à l’inadéquation

de la masse du rein par rapport au poids du receveur. Cette inadéquation augmente le

risque de retour en dialyse après trois ans de greffe (période d’épuisement). Ce travail a

été publié en 2010 :

– Giral M., Foucher Y., Labrune Y., Karam G, Kessler M., Hurault de Ligny B.,

Büchler B., Bayle F., Meyer C., Daguin P., Soulillou JP. Kidney and recipient

weight incompatibility : a cause of early proteinuria and reduced long-term graft

survival. Journal of the American Society of Nephrology. J Am Soc Nephrol. 2010

Jun ;21(6) :1022-9.

2.2.5 Thomas Moyon (Mathématique appliquée, Vannes, 2007)

Il s’agissait d’une analyse globale des facteurs de risque d’échec de greffe à partir de

la cohorte DIVAT.
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Résumé des activités passées

3.1 Une continuité de travaux autour de DIVAT

Mes premières activités de recherche en Biostatistique ont commencé à l’Institut

Universitaire de Recherche Clinique (IURC), Université de Montpellier. J’y ai réalisé

mon stage de DEA qui s’est poursuivi par une thèse de science (bourse du ministère

pour l’enseignement et la recherche). L’objectif principal était de développer les modèles

multi-états dans une approche semi-Markovienne et de montrer leurs intérêts en trans-

plantation rénale à partir de la cohorte de patients transplantés rénaux DIVAT. Ce do-

maine d’application découlait d’une première collaboration avec Magali Giral sur l’étude

du pronostic des receveurs en fonction du poids de leur greffon. Ce travail s’était déroulé

dans les meilleures conditions lors de mon premier passage au CHU de Nantes comme

ingénieur d’étude.

Cette collaboration et les premiers résultats ont permis de justifier la suite de ma

thèse en post-doctorat à l’ITUN (INSERM U1064), grâce au soutien de la fondation

CENTAURE (www.fondation-centaure.fr). Après deux années, j’ai rejoint officielle-

ment l’équipe SPHERE (EA 4275), dirigée par le Pr. V. Sébille-Rivan, en conservant

des liens étroits avec l’INSERM.

3.2 La présentation de la cohorte DIVAT

Cette cohorte n’est pas un simple registre car elle rassemble l’ensemble des critères

cliniques et biologiques utiles à la prise en charge et au suivi médical du patient trans-

planté rénal. Il s’agit d’un outil de recherche clinique. Ce réseau comprend les centres de

25
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Nantes, Nancy, Toulouse, Lyon, Paris Necker, Paris Saint-Louis et Montpellier. Plus de

15000 patients ont été inclus depuis l’initiation du réseau. Aujourd’hui, 40% des patients

greffés rénaux français sont inclus dans le réseau en 1990. Les données sont saisies de

manière prospective par un assistant de recherche clinique spécifiquement formé dans

chaque centre. Des audits croisés sont réalisés entre les centres tous les ans. Un contrôle

de cohérence automatique est réalisé toutes les semaines et un rapport est envoyé aux

attachés de recherche clinique.

A la greffe, les données du donneur sont collectées : âge, sexe, système HLA, re-

lation avec le receveur, hypertension, cause de décès, pression artérielle, médicaments,

sérologies et données biologiques (urée, protéinurie et créatinémie). Parallèlement, les

données du receveur sont : date de transplantation, âge, sexe, sérologie, poids, taille,

antécédents médicaux (cancer, cardiovasculaire, etc.), temps d’ischémie froide, maladie

initiale, méthode de dialyse, greffes précédentes, date de première dialyse, système HLA,

cross-match, immunisation (Panel Reactive Antibody, PRA) et les dialyses post-greffes.

Pendant le suivi, qui est obligatoire à 3 mois, à 6 mois et à tous les anniversaires

de la greffe, les paramètres suivants sont collectés : poids, taille, pression artérielle,

créatinémie, protéinurie, cholestérol, hémoglobine, traitements immunosuppresseurs et

antihypertenseurs. D’autres paramètres sont collectés continuellement : épisodes de rejet

aigu, infections, complications, retours en dialyse, décès. Le suivi est interrompu au

retour en dialyse.

DIVAT a plus récemment été couplé à une biocollection (DIVAT biocoll.). Elle ras-

semble les urines, le sérum, la plasma et les cellules PBMC des donneurs et des re-

ceveurs au sein du Centre de Ressources Biologiques (CRB) du CHU de Nantes. Elle

permet des travaux en routine sur les biomarqueurs en s’appuyant sur les compétences de

l’équipe du Dr. S. Brouard de l’unité de recherche U1064 de l’INSERM. Cette recherche

translationnelle a permis d’identifier de nombreux biomarqueurs potentiels : sanguins

phénotypiques et transcriptionnels.

3.3 Les modèles semi-markoviens

En médecine, la quasi-totalité des travaux qui s’intéressent à la survenue d’événe-

ments sont basés sur le modèle à risque proportionnel de Cox [23] et la probabilité de

survie est décrite par l’estimateur non-paramétrique de Kaplan-Meier [81]. C’est le cas

en transplantation rénale où l’objectif principal est d’améliorer la survie du patient et

de son greffon. Plus précisément, l’identification en pré-greffe des facteurs de risque de

la perte des greffons permet aux experts de définir les règles de répartition et d’adap-

ter la surveillance des patients après la greffe. La littérature dans ce domaine est très
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importante mais repose souvent sur une méthodologie statistique peu adaptée.

L’estimateur de Kaplan-Meier et/ou le modèle de Cox permettent l’analyse du temps

d’apparition d’un événement unique. Deux choix de variables à expliquer sont souvent

rencontrés : le délai entre la greffe et le retour en dialyse (les décès avec un greffon

fonctionnel sont alors des censures à droite) ou le délai entre la greffe et le premier échec

observé (retour en dialyse et décès du patient avec un greffon fonctionnel). La première

solution est critiquable puisqu’un nombre non-négligeable de décès est dû à la greffe

ou à sa prise en charge. La surestimation de la survie qui en découle n’est pas le seul

problème. Le modèle de Cox suppose en effet une indépendance entre le processus de

censure et le temps de l’événement étudié. Cette hypothèse est difficilement acceptable

puisque le niveau de la fonction du greffon est lié à de nombreuses comorbidités. Le

second choix est à l’inverse le plus pessimiste. Il considère tous les décès comme liés à

la transplantation alors que beaucoup d’entre eux sont indépendants.

Nous avons ainsi montré que l’approche multi-états permettait d’améliorer la modéli-

sation de la survie. Nous avons en particulier choisi l’approche semi-Markovienne, pour

laquelle les risques de transition entre les états dépendent principalement du temps passé

dans l’état. Nous avons initialement développé ce modèle pour l’évolution des patients

atteints du VIH [49, 50, 97].

L’application de ces modèles pour étudier l’évolution des patients transplantés rénaux

a été ensuite proposée pour gérer les transitions censurées par intervalle [45]. Grâce à

cette méthode, plus de facteurs de risque sont identifiés et leur interprétation est d’autant

plus direct et qualitative que l’effet est modéliser spécifiquement sur chaque transition.

Le modèle semi-Markovien permet aussi de prendre en compte une structure d’aggrava-

tion de l’état du greffon en se basant sur le débit de filtration glomérulaire.

Nous avons également utilisé ce modèle pour améliorer l’évaluation médicoéconomique

de traitements de pathologies chroniques [19]. Deux prises en charge différentes de pa-

tients atteints d’un cancer du côlon ont été étudiées. Leur efficacité a été modélisée selon

une approche multi-états : rémission, rechute, décès. Les coûts de ces prises en charge,

conditionnés sur l’état de santé, permettent une modélisation plus précise par rapport

à la méthode classique (rapport entre l’efficacité globale et les coûts marginaux).

Dans la continuité de ces travaux, nous avons proposé un test permettant d’évaluer

le respect de l’hypothèse semi-Markovienne selon laquelle la fonction de risque dépend

du temps passé dans l’état en cours [46]. Dans ce même travail, nous proposons une

amélioration de la gestion de la censure par intervalle.
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3.4 La survie relative

Même si ces approches multi-états dépassent certaines limites du modèle de Cox,

comme la séparation explicite des transitions vers le décès ou vers le retour en dialyse,

elles n’offrent pas de solution dans la confusion entre les décès indépendants ou liés à

la transplantation. Un modèle spécifique à certaines causes de décès n’est pas adapté

puisqu’il n’est pas possible de définir explicitement les décès dus ou non à la pathologie.

Plus récemment, nous avons donc adapté les modèles de survie relative pour pouvoir

indirectement supprimer la part de la mortalité indépendante de la transplantation à

partir de tables de mortalité de la population générale. Nous montrons ainsi que la sur-

mortalité relative à la transplantation est indépendante du sexe du receveur. Autrement

dit, le fait d’être transplanté n’aggrave pas l’écart de mortalité observé entre hommes

et femmes dans la population générale. L’inverse est observé pour l’âge du receveur à

la greffe puisqu’il semble que l’effet de l’âge observé dans la population générale est

aggravé après la transplantation. Ce travail est en cours de ré-écriture et sera bientôt

soumis. Nous avons aussi intégré cette approche dans un modèle à risques compétitifs

grâce au travail de thèse de Vanessa Rousseau [131] : le retour en dialyse et le décès dû

à la transplantation sont en compétition et la fonction de risque vers le décès dû à la

transplantation est estimée relativement à la population générale.

La limite majeure de ces analyses porte sur la population de référence qui n’est

pas forcément la population générale, mais plutôt les patients qui restent en dialyse.

Modéliser cette mortalité attendue des patients sur liste d’attente d’un greffon est un

des objectifs du PHRC national MaKiT.

3.5 Les courbes ROC dépendantes du temps

Indépendamment des limites méthodologiques des modèles statistiques utilisés en

transplantation pour l’analyse des temps d’événements, beaucoup d’études s’intéressent

à identifier des marqueurs non-invasifs qui permettraient de mieux stratifier les patients

selon leur risque de faire tel ou tel événement. Les marqueurs cliniques non-invasifs cou-

ramment utilisés comme variables pronostiques sont la créatinémie ou le débit de filtra-

tion glomérulaire. Il existe une littérature importante démontrant leur forte corrélation

avec la survie du greffon et/ou du patient. Cependant, on retrouve la plupart du temps

une inadéquation entre la question posée et la méthode statistique utilisée : les conclu-

sions sont basées sur des tests statistiques évaluant la probabilité que le lien observé

soit dû au hasard (p-value). Il existe une confusion entre les notions de corrélation et

prédiction, nous avons d’ailleurs rappeler ce problème méthodologique dans une lettre
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à l’éditeur de l’American Journal of Transplantation [42].

La capacité pronostique d’un marqueur peut être évaluée par l’aire sous la courbe

ROC (Receiver Operating Characteristic). Les notions de sensibilité et de spécificité

mesurent mieux les qualités de discrimination d’un outil diagnostique. Cependant, les

courbes ROC traditionnelles ne prennent pas en compte la dimension temporelle des

données : les trajectoires peuvent être censurées ou tronquées et un événement n’a

pas la même importance selon son temps d’apparition. Pour prendre en compte cette

complexité supplémentaire, nous avons utilisé et adapté les courbes ROC dépendantes

du temps [63]. Nous avons ainsi évalué les capacités pronostiques des principaux facteurs

de risque pré-greffe connus en transplantation rénale. Même si certaines variables sont

fortement corrélées à la survie du greffon et/ou du patient (p<0,0001), aucune ne semble

constituer un marqueur à partir duquel une décision médicale peut être prise [44].

Nous avons proposé un outil pronostique d’échec de greffe rénale alliant plusieurs

paramètres [43]. Il est calculé un an après la greffe. L’aire sous la courbe est égale à

0,78, capacité pronostique supérieure aux marqueurs classiquement utilisés (créatinémie,

évolution de la créatinémie et filtration glomérulaire estimée). Un brevet est déposée

(0959043).

Nous avons aussi développé la théorie des courbes ROC dépendantes du temps pour

permettre le calcul de seuils de décision [48]. L’objectif est de définir un test binaire

permettant de classer les patients à haut risque des patients à faible risque. Cette valeur

minimise une fonction de coût proportionnelle à la probabilité de faux positifs et négatifs.

Pour rester proche de la problématique clinique, cette fonction de coût intègre aussi le

poids d’un faux positif par rapport à celui d’un faux négatif. Le chapitre 6 détaille ce

travail.

Pour rejoindre notre problématique en transplantation, nous avons développé les

courbes ROC dépendantes du temps lorsque deux événements sont en compétition :

retour en dialyse et décès avec un greffon fonctionnel [47]. Le pronostic est alors composé

de trois classes : retour en dialyse, décès avec un greffon fonctionnel et vivant avec un

greffon fonctionnel. Notre modèle utilise le principe semi-markovien : les courbes ROC

paramétriques peuvent être soit spécifiques à chaque événement à pronostiquer, soit

marginales (quel que soit l’événement). Nous avons ainsi démontré que la fonction rénale

(formule MDRD) constitue un marqueur acceptable du risque de retour en dialyse mais

il n’est pas pronostique du risque de décès (toutes causes confondues). Ce travail est

détaillé dans le chapitre 7.

Plus récemment, nous avons proposé une méthode pour construire une courbe ROC

à partir de courbes de survie déjà publiées [21]. L’objectif est de pouvoir évaluer les

capacités pronostiques d’un marqueur à partir de méta-analyses. Notre méthode est
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d’abord validée à partir des données de DIVAT (comparaison des estimations obtenues

à partir des données individuelles et celles faites à partir des données agrégées pour

chaque centre). La méthode est ensuite appliquée sur les données de la littérature pour

évaluer si le marqueur de prolifération tumorale Ki-67 est un marqueur pronostique de la

survie des patientes atteintes d’un cancer du sein. Ce travail est détaillé dans le chapitre

5.

Enfin, nous avons adapté l’algorithme de bootstrap 0,632+ à l’estimation des courbes

ROC dépendantes du temps [25]. Comme détaillé dans le chapitre 4, l’objectif est de

construire et valider une signature pronostique à partir de biopuces lorsque les données

sont censurées et/ou tronquées. Cet algorithme permet d’éviter les résultats trop opti-

mistes dus à la sur-paramétrisation (overfitting, lorsque le nombre de variables large-

ment supérieur au nombre d’individus). Pour réduire cette dimension, nous utilisons une

pénalisation de la vraisemblance du modèle de Cox de type Lasso.

3.6 Un soutien méthodologique à l’équipe U1064

Comme abordé précédemment, par exemple avec le KTFS associé à une aire sous

la courbe ROC à 8 ans post greffe de 0,78, les paramètres cliniques ne permettent

pas à eux seuls de prédire l’évolution future d’un patient. La solution est de prendre

en compte de nouveaux biomarqueurs ou d’identifier de nouveaux facteurs de risque

cliniques. Il s’agit d’un des objectifs de l’équipe INSERM U1064 dirigée par Sophie

Brouard. Ma contribution consiste en un soutien statistique et méthodologique. Les

principaux travaux ont consisté à étudier le rôle du protéasome [13], de FOXP3 [12], de

SMILE [125], du répertoire Vβ [28] ou de BAFF [144] comme marqueurs potentiellement

impliqués dans le diagnostic ou le pronostic des patients transplantés rénaux.
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Time dependent ROC curves for the estimation of true

prognostic capacity of microarray data

Danger R. and Foucher Y.

Statistical Applications in Genetics and Molecular Biology. 2012 Nov

22 ;11(6).

4.1 Introduction

The use of microarray technology has revolutionized the identification of molecular

signatures for the prediction of patient outcome, notably in the cancer field [150, 130,

139]. In such time-to-event data, the samples (tissue, blood, urine, etc.) are collected

under the same experimental conditions (event-free) and the individuals are followed up

in order to identify features predictive of the event. Depending on the follow-up interval,

the time of the event may be observed or not (right-censored). The features selection

method must take this type of incomplete data into account.

One solution is to firstly select the features according to initial risk(s) factor(s) collec-

ted at the same time as the sample and to secondly use time-to-event methods in order to

validate the predictive properties of these features [130, 5, 73]. Nevertheless, these risks

factors are not necessarily observed and some features may be predictive independently

from known risk factors. Few authors have proposed using survival-specific methods in

order to directly select the best predictive features. The simplest method is the Kaplan

and Meier estimator [81] associated with the LogRank statistic. Even though this type

of non-parametric method is attractive, the feature expression has to be categorized. In

order to calculate the cut-off values, Jenssen et al. computed the LogRank statistic for

all features and for all possible cut-off values for each feature (2 or 3 classes) [75]. The

33
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inherent problem of dimension is then dramatically exacerbated by the repetition of the

tests for all the cut-off values. The Cox proportional hazards model should be used for

the regression of time according to quantitative factors such as feature expression, but

some reductions of the dimension need to be performed since the number of features is

much higher than the number of individuals.

To manage this issue, a simple method is the univariate selection of features based on

traditional inference tests. Bovelstad et al. found the Cox model with lasso penalty very

reliable, as it is also a variable selection method with considerably better prediction

performance [15]. Li and Gui proposed method that combines partial Cox regression

with partial least squares [92]. However, Schumacher et al. [133] demonstrated, using

the 0.632+ estimator of the prediction error, that the approach of Li and Gui performed

worse than the Kaplan-Meier benchmark value, ignoring all covariate information [133].

In accordance with the comparative study by Bovelstad et al. [15], Schumacher et al.

found that the Cox model with lasso penalty appeared to have the most potential [133].

The authors also demonstrated that the 0.632+ estimator of the prediction error is

an interesting indicator for evaluating and comparing different models. It takes into

account overfitting without splitting the available data into training and validation sets.

The 0.632+ estimator of prediction error [133] or the corresponding summary measure

by integrating over the time are thus useful tools for comparisons and validations of

survival models in the context of overfitting [122]. Nevertheless, three limitations should

be considered. First, the tuning parameter is defined using the full data (5-fold cross-

validation), while the selection of the model complexity has to be included in each

bootstrap iteration in order to avoid overoptimistic results [136]. Second, even though

the prediction error can be used for model comparisons, it is not a meaningful indicator

for biologists or clinicians. Third, the prediction error is based on the regression residuals

and therefore depends on the incidence of the event, but the sample may not necessarily

represent the targeted population.

In this paper, we propose a 0.632+ estimator of the area under the time-dependent

Receiver Operating Characteristic (ROC) curve [63]. The method is designed for the

analysis of censored and/or truncated survival data. In Section 2, we describe the 0.632+

approach. In Section 3, we perform simulations to test the adequacy of the method. We

apply this method in Section 4 to the DLBCL (diffuse large-B-cell lymphoma) dataset

published by Rosenwald et al. [130]. All of these analyses use the Cox model with lasso

penalty.
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4.2 Methods

4.2.1 Cox model with lasso penalty

Let X be the vector of the P feature expressions with X = (X1, ..., XP ) and xj =

(xj1, ..., xjP ) the associated observations for the individual j (j = 1, ..., N). N represents

the number of individuals. Let Tj be the time of the event occurrence for the individual

j and Cj be the corresponding time of last follow-up (right-censoring time). If Cj < Tj ,

Tj is not observed and the only available information is that the event occurs after

Cj (∆j = 0). If Cj ≥ Tj , Tj is observed (∆j = 1). The time of the last observation

of the individual j is Y1j , with Y1j = min(Tj , Cj). We also consider that Tj can be

left-truncated. Y1j is then observable only if Tj ≥ Y0j , where Y0j is the left truncation

random variable. The Cox models assumes that the instantaneous hazard at time t for

the jth individual is

h(t|xj) = h0(t)exp(ηj)

where h0(t) is the unknown baseline hazard function and ηj is the prognostic index

equals to x′jβ, where β = (β1, ..., βP ) are the regression coefficients vector. The classical

estimation is based on the maximum partial likelihood l(β) [23]. The lasso shrinks the

regression coefficients towards zero by penalizing by the sum of their absolute value

[145] :

β̂ = arg max{l(β)− λ
P∑
p=1

|βp|}

where the tuning parameter λ is positive.

4.2.2 Time dependent ROC curve

The question is to evaluate the predictive capacity of the estimated prognostic index

η̂ = xβ̂. As explained by Molinaro et al. [100], the goal is to build a rule implementing the

information from η̂ in order to predict T . Suppose that if η̂ is higher than a critical value

c, it predicts the occurrence of the event before τ . τ is the prognostic time. Respecting

the definition of Heagerty et al. [63], the false negative rate (FNR) and false positive

rate (FPR) for a prognosis up to time τ are respectively FNRτ (c) = P (η̂ ≤ c|T ≤ τ)

and FPRτ (c) = P (η̂ > c|T > τ). The prognostic capacities of η̂ can be summarized

by the time dependent ROC curve and the area under this curve (AUC). 1− FNRτ (c)

is plotted against FPRτ (c) for all the thresholds c : {FPRτ (c), 1 − FNRτ (c), c ∈ <}.
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These probabilities can be non-parametrically estimated :

F̂NRτ (c) = {Ĝ(c)− Ŝ(−∞, τ) + Ŝ(c, τ)}/{1− Ŝ(−∞, τ)} (4.1)

F̂PRτ (c) = Ŝ(c, τ)/Ŝ(−∞, τ) (4.2)

where Ĝ(c) is the empirical distribution function of η̂ in c, which is equal to

N−1
N∑
j=1

δ(η̂j < c).

δ(a) equals 1 if a is true and 0 otherwise. S(c, τ) is the bivariate survival function of η̂

and T . Because h0(t) is unknown, S(c, τ) can be estimated using the Akritas estimator

[4] :

Ŝ(c, τ) = N−1
N∑
j=1

Ŝ(τ |η̂ = η̂j)δ(η̂j > c) (4.3)

The estimation of the conditional survival probability, Ŝ(τ |η̂ = η̂j), is based on the

nearest neighbors. Let Kjl be the indicator that a patient l is eligible in the neighbors of

the patient j according to η̂j : Kjl = δ(|Ĝ(η̂j)− Ĝ(η̂l)| < π). π represents the proportion

of included neighbors. From these definitions, the estimation of conditional survival

respects the same principle as Kaplan and Meier :

Ŝ(τ |η̂ = η̂j) =
∏
y1j≤τ

{1− d(y1j)/R(y1j)}, (4.4)

where d(y1j) and R(y1j) are respectively the number of events and the number of patients

at risk at time y1j . Formally :

d(y1j) =

N∑
l=1

Kjlδ(y1j = y1l)∆l (4.5)

R(y1j) =
N∑
l=1

Kjlδ(y1j ≤ y1l) (4.6)

This estimator is valid if the data are not left-truncated : y0j = 0, ∀j = 1, ..., N . The

left-truncation can be included by correcting the number (4.6) of at risk patients [109] :

R(y1j) =

N∑
l=1

Kjlδ(y0j ≤ y1l ≤ y1l) (4.7)



4.2. Methods 37

4.2.3 0.632+ estimator

As explained by Ransohoff [127], molecular markers are set to revolutionize the

process of evaluating prognosis and diagnosis. However, the data overfitting is often

associated with high expectations but also with disappointment when original results

cannot be reproduced. The best method is to validate the results in a independent and

large dataset. Because it is often impossible (cost, availability of samples, etc.), a common

approach is to split the data into a training and test set. Molinaro et al. demonstrated

the limitations of this method based on theoretical arguments and simulation results

[100]. Previous studies have found that the bootstrap-based resampling methods are

superior to cross-validation and leave-one-out cross-validation. As recent studies in this

field of microarray-based prediction [133, 100, 7, 51], we focused on the 0.632+ bootstrap

estimator. This methodology was recently proposed by Adler and Lausen for estimating

ROC curves when data are complete [2], which is not adapted for time-to-event analysis

with censored/truncated data.

Consider B bootstrap samples (b = 1, ..., B) of size N with replacement. Respecting

the same principle as the cross-validation, the observations included in the bootstrap

sample are used for training and for estimating the regression parameters β̂b. The defini-

tion of the model complexity also has to be included in each bootstrap iteration in order

to avoid overoptimistic results. Schumacher et al. [133] found that selection criteria, such

as bayesian information criterion, fail to compute the tuning parameter λ and they used

5-fold cross-validation [110]. But the authors were limited by the computational burden

and the λ value was obtained using the full dataset. We proposed the use of the algo-

rithm recently reported by Goeman [56] that efficiently estimates the Cox model with

lasso penalty. We also used 5-fold cross-validation to estimate the tuning parameter λ̂b

of each sample b (b = 1, ..., B).

Based on the estimations β̂b and λ̂b, the FNR (4.1) and the FPR (4.2) can be

calculated using the data not included in the bootstrap sample, respectively F̂NR
b

τ (c)

and F̂PR
b

τ (c). The bootstrap cross-validation rates are obtained by the average :

F̂NR
BCV

τ (c) = B−1
B∑
b=1

F̂NR
b

τ (c) (4.8)

F̂PR
BCV

τ (c) = B−1
B∑
b=1

F̂PR
b

τ (c) (4.9)

The corresponding ROC curve is {F̂PR
BCV

τ (c), 1− F̂NR
BCV

τ (c), c ∈ <} and ÂUC
BCV

τ

is the corresponding bootstrap cross-validation estimation of the AUC at time τ . If N

is sufficiently large (N > 40), the probability that an individual appears in the training
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set is 1 − (1 − 1/N)N ≈ 0.632. The proportion of 0.368 is composed of completely

independent data from the replicated data included in the training set, which causes

an underestimation of the prognostic capacity. To correct for this, Efron proposed the

0.632 estimator [34] :

F̂NR
632

τ (c) = 0.368 FNRτ (c) + 0.632 F̂NR
BCV

τ (c) (4.10)

F̂PR
632

τ (c) = 0.368 FPRτ (c) + 0.632 F̂PR
BCV

τ (c) (4.11)

where FNRτ (c) and FPRτ (c) are the apparent rates. These rates are calculated simi-

larly to (4.8) and (4.9), but using the B training sets. More precisely, based on β̂b and

λ̂b, the apparent FNR and FPR can be calculated using only the data included in the

bootstrap sample, respectively FNR
b
τ (c) and FPR

b
τ (c) :

FNRτ (c) = B−1
B∑
b=1

FNR
b
τ (c) (4.12)

FPRτ (c) = B−1
B∑
b=1

FPR
b
τ (c) (4.13)

The 0.632 ROC curve is {F̂PR
632

τ (c), 1 − F̂NR
632

τ (c), c ∈ <} and ÂUC
632

τ is the

corresponding 0.632 estimation of the AUC at time τ .

The rates (4.10) and (4.11) may be associated with overestimations if the apparent

estimations are very small when overfitting data. Efron and Tibshirani improved the

correction with the 0.632+ estimator [36]. The no-information rates associated with

FNR and FPR may be estimated using all the data and considering the independence

between η̂ and T : γ̂N,τ (c) = 1− γ̂P,τ (c) = Ĝ(c). These no-information probabilities are

used to define the overfitting rates :

r̂N,τ (c) = {F̂NR
BCV

τ (c)− FNRτ (c)}/{γ̂N,τ (c)− FNRτ (c)} (4.14)

r̂P,τ (c) = {F̂PR
BCV

τ (c)− FPRτ (c)}/{γ̂P,τ (c)− FPRτ (c)} (4.15)

We assigned these rates to 0 for negative values and to 1 for values higher than 1. The

0.632+ estimations of the false negative and positive rates are thus defined by :

F̂NR
632+

τ (c) = {1− ψ(r̂N,τ (c))} FNRτ (c)

+ ψ(r̂N,τ (c)) F̂NR
BCV

τ (c) (4.16)

F̂PR
632+

τ (c) = {1− ψ(r̂P,τ (c))} FPRτ (c)

+ ψ(r̂P,τ (c)) F̂PR
BCV

τ (c) (4.17)
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where ψ(x) = 0.632/(1−0.368x). The corresponding 0.632+ ROC curve is {F̂PR
632+

τ (c),

1 − F̂NR
632+

τ (c), c ∈ <} and ÂUC
632+

τ is the corresponding 0.632+ estimation of the

AUC at time τ . This method has been implemented in an R package ROC632 available

at www.divat.fr/en/softwares or upon request from authors.

4.3 Simulation studies

4.3.1 Methods

Different values of N were used : 60, 125 and 250. The times-to-event were simulated

using a Weibull PH model. The feature expressions were obtained by assuming inde-

pendent standard normal distributions. The censoring times were simulated indepen-

dently respecting Exponential distributions. The prognostic time was fixed at 6 months.

The parameters of the Exponential distributions were defined to obtain three different

censoring rates at 6 months : 30, 50 and 70%. We distinguished the 3 following scenarios :

#1 Total overfitting. Among 750 features, no feature is associated with the time-

to-event, β = (0, 0, ..., 0). We fixed the shape and scale parameters of the Weibull

distribution at respectively 4 and 55. In this scenario, the true value of the AUC

is 0.5.

#2 No overfitting. Among 3 features, 2 features are associated with the time-

to-event, β = (log(1.2), -log(1.2), 0). We fixed the shape and scale parameters

of the Weibull distribution at respectively 4 and 148. In this scenario, the true

value of the AUC is obtained by using the apparent estimator. Indeed, there is no

overfitting because only 3 features are analyzed by using at least 60 individuals.

#3 High overfitting. Among 750 features, 2 features are associated with the time-

to-event, β = (log(1.2), -log(1.2), 0, ..., 0). We fixed the shape and scale parameters

of the Weibull distribution at respectively 4 and 148. In this scenario, the over-

fitting is high since the number of features is much higher than the number of

individuals. Nevertheless, the only two significant features have a similar effect

than the two significant features in the second scenario. Thus, the true values of

the AUC are similar to the apparent estimations in the second scenario (where

there is no overfitting).

For each possible combination of the overfitting levels, sample sizes and censoring

rates, 250 samples were simulated. B = 100 bootstrap iterations were used for each

simulated sample. Because Simon et al. recently described a cross-validation (CV) based

method for estimating time-dependent ROC curves [137], we also added this estimator

to the comparisons.
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4.3.2 Results

The results are presented in Table (4.1). As expected in the first scenario, the ap-

parent estimator overestimated the AUC with values between 0.69 and 0.80. The 0.632

estimator appeared also to be overoptimistic. In contrast, the BCV and 0.632+ estima-

tions were similar to the true value of 0.50. These conclusions can be made regardless

of the sample size and the censoring rate.

In the second scenario, the BCV, the 0.632 and the 0.632+ estimations were similar

to the true apparent estimations if the sample size was large (N = 250). These adequate

estimations were also observed for N = 125 with 30% of censoring. However, the three

methods underestimated the prognostic capacity for lower sample size and/or higher

censoring rates. Theses underestimations were greater for the BCV.

In the third scenario, one can notice that the 0.632+ estimations were similar to

the true AUC for N = 250 with 30 or 50% of censoring. These adequate estimations

were also observed for N = 125 with 30% of censoring. For the worst situations (lower

sample sizes and/or higher censoring rates), the 0.632+ estimator underestimated the

prognostic capacity. This underestimation was higher for the BCV estimator, but lower

for the 0.632 estimator.

Regardless the scenario, the CV estimations were associated with the more important

standard deviations.

4.4 Application to the DLBCL study

In this study, Rosenwald et al. [130] evaluated tumor samples from 240 DLBCL

patients treated with anthracycline-based therapy. The full dataset was split into trai-

ning (n=160) and test (n=80) sets. They confirmed the existence of the two DLBCL

subgroups described previously, GCB-like and ABC-like. The overall survival was signi-

ficantly different among the subgroups, with 5-year survivals of 60% for the GCB-like

and 35% for ABC-like subgroups. An additional third subtype was described with a

5-year survival of 39%. These groups were first obtained by a clustering analysis using

all the features.

Several authors have reanalyzed these data. In particular, Segal concluded that the

use of the Cox model with lasso penalty appears to be the best approach as it balances

between prediction and interpretation [135]. Time-dependent ROC curves were used in

the test set. Gui and Li used the same splitting and ROC-based validation [58]. Because

splitting the data worsens the overfitting and does not use the available information
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Table 4.1: Mean and standard deviation (between brackets) of the time dependent AUC
at 6 months obtained from the 250 simulated samples for each combination of overfitting
level, sample size and censoring rate. B =100 bootstrap replications are performed for
computing the apparent, the bootstrap cross-validation (BCV), the 0.632, the 0.632+
and the 5-fold cross-validation (CV) estimations.

Level ∗ N cens. Apparent BCV 0.632 0.632+ 5-fold CV
rate

0/750 60 0.3 0.743(0.103) 0.518(0.071) 0.608(0.059) 0.528(0.080) 0.523(0.192)
0.5 0.781(0.097) 0.504(0.058) 0.614(0.053) 0.513(0.065) 0.495(0.177)
0.7 0.745(0.108) 0.500(0.058) 0.596(0.058) 0.510(0.063) 0.489(0.181)

125 0.3 0.782(0.071) 0.514(0.050) 0.623(0.040) 0.527(0.057) 0.485(0.138)
0.5 0.741(0.082) 0.498(0.054) 0.595(0.047) 0.508(0.062) 0.492(0.149)
0.7 0.701(0.118) 0.502(0.058) 0.581(0.059) 0.514(0.066) 0.483(0.143)

250 0.3 0.799(0.035) 0.508(0.039) 0.625(0.027) 0.521(0.046) 0.497(0.086)
0.5 0.777(0.062) 0.505(0.046) 0.612(0.039) 0.516(0.054) 0.472(0.111)
0.7 0.693(0.121) 0.505(0.059) 0.579(0.061) 0.519(0.067) 0.518(0.145)

2/3 60 0.3 0.846(0.050) 0.789(0.063) 0.810(0.057) 0.808(0.058) 0.822(0.118)
0.5 0.818(0.082) 0.742(0.092) 0.770(0.086) 0.765(0.089) 0.740(0.142)
0.7 0.749(0.119) 0.656(0.110) 0.690(0.110) 0.677(0.116) 0.650(0.150)

125 0.3 0.842(0.041) 0.818(0.044) 0.827(0.042) 0.826(0.042) 0.835(0.061)
0.5 0.840(0.049) 0.803(0.058) 0.816(0.054) 0.815(0.055) 0.795(0.089)
0.7 0.798(0.076) 0.732(0.086) 0.756(0.081) 0.751(0.084) 0.722(0.103)

250 0.3 0.838(0.032) 0.825(0.033) 0.830(0.033) 0.830(0.033) 0.836(0.039)
0.5 0.836(0.033) 0.817(0.037) 0.824(0.035) 0.824(0.035) 0.814(0.050)
0.7 0.828(0.047) 0.795(0.054) 0.807(0.051) 0.806(0.051) 0.774(0.074)

2/750 60 0.3 0.902(0.039) 0.646(0.083) 0.751(0.058) 0.677(0.090) 0.725(0.144)
0.5 0.869(0.071) 0.591(0.091) 0.702(0.071) 0.614(0.102) 0.629(0.195)
0.7 0.827(0.086) 0.534(0.072) 0.649(0.061) 0.549(0.083) 0.554(0.168)

125 0.3 0.905(0.032) 0.783(0.051) 0.831(0.036) 0.819(0.048) 0.833(0.062)
0.5 0.890(0.041) 0.729(0.073) 0.791(0.053) 0.765(0.075) 0.779(0.094)
0.7 0.834(0.087) 0.619(0.086) 0.702(0.070) 0.647(0.097) 0.645(0.140)

250 0.3 0.898(0.023) 0.811(0.027) 0.845(0.022) 0.843(0.025) 0.832(0.037)
0.5 0.903(0.025) 0.789(0.037) 0.833(0.027) 0.825(0.034) 0.813(0.050)
0.7 0.881(0.052) 0.729(0.060) 0.785(0.047) 0.766(0.059) 0.757(0.079)

∗ Number of significant features versus total number of features.

efficiently, we used the 0.632+ estimation of the time-dependant ROC curves. Applying

the same strategy as previous authors, the missing data were replaced according to the

mean expression level of the nearest 8 genes. Respecting the previous simulation results,

the prognostic times were τ = 2, 3, ..., 15 years in order to maintain the censoring rates

within 52.5%. B = 100 bootstrap iterations were used.

The results are presented in Figure (4.1). The AUCs obtained using the 0.632+

estimator were between 0.70 and 0.65 (from 2 to 14 years). The area decreased with

prognostic time, illustrating that long-term failures are often more difficult to predict.

The overfitting was high with an apparent AUC around 0.95. In contrast, the prognostic

capacity appeared to be underestimated when using the BCV estimator. The 0.632+

estimations were less optimistic than the 0.632 estimations. The AUCs obtained in the

test set by Segal [135] were more like those of the 0.632+ estimations.

Figure (4.2) presents the previous estimations by (i) re-estimating the tuning para-

meter at each bootstrap iteration, (ii) estimating the tuning parameter on the full data
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Figure 4.1: AUC according to the prognostic times and the different estimators. Results
obtained by analyzing the DLBCL data, by using the Cox model with lasso penalty and by
re-estimating the tuning parameter for each bootstrap iteration (5-fold cross-validation).
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set and re-using the value at each bootstrap iteration to select features, and (iii) using

the same vector of features (initially defined with the tuning parameter on the full data

set) at each bootstrap iteration. As expected, the highest apparent AUC was obtained

with the first approach : the model building is completely re-performed at each iteration

with the maximum adjustment to the training set. Moreover, the third approach gave a

significant overestimation of the AUC obtained by resampling (BCV, 0.632 or 0.632+)

because all steps of model building are not performed within each bootstrap sample :

the selection of features is ignored. The associated overoptimistic results have already

been demonstrated [136].

Interestingly for the BCV and 0.632+ methods, the AUC obtained by using re-

sampling were closed for (i) and (ii), while overestimation was expected in the second

approach, i.e. when the tuning parameter was fixed among the bootstrap iterations but

the features selection at each iteration was retained. This similarity was not observed

for the 0.632 method with an overestimation in (ii).

4.5 Discussion and Conclusions

In this paper, we propose a 0.632+ estimator of the time-dependent ROC curve to

exceed the latter limitations. First, ROC-based methodologies are well-accepted in the

community of biologists and physicians. The AUC represents the ability of a prognostic

factor to correctly distinguish patients who will develop events in the future from those

who will not. In the application to DLBCL data, for example, we estimated the AUC at

0.68 for a prognosis up to 10 years (Figure 4.1). Thus, a patient who will die before 10

years has a 68% chance of having a score higher than a patient who will be alive at this

time. Even if the 0.632+ computation may be difficult to understand, the interpretation

of the resulting AUC is straightforward. Second, the time-dependent FNR and FPR

are conditional distributions of the prognostic index assuming the distribution of the

time-to-event). These indicators do not depend on the incidence of the event. The AUC

is an invariant prognostic indicator among populations with different incidences. Third,

the tuning parameter is re-estimated at each bootstrap iteration according to the recent

efficient algorithm of Goeman [56]. Thus, the full data set is never used.

We validated the proposed methodology by simulating three overfitting levels (total,

high, low) according to different sample sizes and censoring rates. If the available infor-

mation is sufficient (N = 250 with less than 50% of censoring or N = 125 with less than

30% of censoring), the 0.632+ estimators appeared to be similar to the true expected

areas under the curve, regardless of the overfitting level. In contrast, the 0.632 estima-

tor appeared overoptimistic when all the features are independent to the time-to-event
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Figure 4.2: AUC according to the prognostic times and the different estimators. Three
approaches are compared : the tuning parameter is re-estimated at each bootstrap itera-
tion, the tuning parameter is initially estimated on the full data set and the value is used
at each iteration for the features selection, and the tuning parameter and the selected
features are both initially defined on the full data set.
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distribution. Moreover, the BCV estimator underestimated the true prognostic capacity

when the overfitting was high. Finally, the CV estimator was associated to very large

standard deviations. Based on these results and because the overfitting level is unknown

in practice, the 0.632+ appears to have the best behavior. Nevertheless, we also have to

notice that a minimum of 125 individuals are required with less than 30% of censoring

or a minimum of 250 individuals for a censoring rate up to 50%. It is not possible to

compute all the possible situations, but it is clear that these methods should not be used

for small sample sizes (less than 125 individuals), in opposition to the current literature

in medicine or in biology.

We applied the methodology to the DLBCL data [130], which includes 240 patients

with about 50% of censoring for the longer prognostic time. The AUCs obtained by

using the 0.632+ estimator were between 0.70 and 0.65. This illustrates the utility of

this signature to predict mortality up to 15 years, but it also illustrates that this signature

alone is not sufficient for medical decision-making. Indeed, a patient who will die before

10 years has a 32% chance of having a score lower than a patient who will be alive at this

time. The areas obtained using the 0.632+ estimator were very similar to the revisited

analysis by Segal [135], who split the sample for independent validation. Regardless of

the similar results to Segal, our approach has several advantages by using all the data.

First, the split is associated with a increasing type II error in the features selection step.

Second, a particular split of the data is possible. If very different training and test sets

are obtained, the results may be under optimistic. Third, it avoids the temptation to

re-perform the analysis with different splits so as to choose the best results.

Again using the DLBCL data, we evaluated the impact of not including all the steps

of the model building in the algorithm. Overlaps between the bootstrap training and test

sets can cause an overestimation of the prediction capacity [76]. The reference approach

is to re-estimate the tuning parameter and to select the features at each bootstrap

iteration. Nevertheless, the 0.632+ estimator appeared to be robust when the tuning

was estimated on the full data set and re-used at each step for the features selection.

Even though this limit was acknowledged by Schumacher et al. [133], their assumption

seems reasonable on this real data set. This assumption is associated to an important

time-saving. Nevertheless, in agreement with Simon et al. and because results from

DLBCL data are not generalizable, the complete re-estimation of the model at each

iteration remains less open to criticism [136].

The global approach (resampling, calibration, validation) can be affected by the mo-

del misspecification, as all the regression analysis. Given the high dimension data, it is

not realistic to test every assumption for every feature. The choice of the survival model

was not treated in this paper ; only the Cox model with lasso penalty was used. The

three main assumptions are the hazard proportionality, the log linearity and the condi-
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tionally independent censoring given features. Future comparisons of different modeling

approaches by using the 0.632+ time dependent ROC curves will be interesting. These

may include the ridge Cox regression [151], the generalization of partial least squares

[92], the random survival forests [72] or the structure-based variable selection for survival

data [88]. This is beyond the scope of this paper, as here we focused on the definition

and the validation of the 0.632+ estimator for time dependent ROC curves. However,

the algorithm has been formulated in a general way and can be subsequently applied

to other models. Moreover, the proposed estimator of the time-dependent ROC curve is

non-parametric.

In summary, we demonstrated in this paper that the 0.632+ estimator of time-

dependent ROC curve is useful to estimate the predictive accuracy of prognostic signa-

ture based on high-dimensional data. Simulations illustrated that it outperforms the

other approaches, especially the cross-validation solution recently proposed by Simon et

al. [137]. The application on DLBCL data constitutes an example of the simple inter-

pretation of the results in term of medical decision making. We propose an R package

entitled ROC632 and available at www.divat.fr/en/softwares. This algorithm includes all

the steps of the model building.
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A literature-based approach to evaluate the predictive

capacity of a marker using time-dependent Summary

Receiver Operating Characteristics (SROCt)

Combescure C., Daurès JP. and Foucher Y.

Statistical Methods in Medical Research. 2012. Online First.

5.1 Introduction

The correlation between potential prognostic markers and disease evolution is a ma-

jor issue of modern clinical research. Given the abundance of papers devoted to the eva-

luation of the prognostic performances of biomarkers, methods to synthesize the results

from the literature are needed. Since most of the published studies are based on survival

analyses, several authors have performed meta-analyses using survival differences. For

example, Parmar et al. [111] and Williamson et al. [155] suggested preferentially sum-

marizing time-to-event data from different trials using an overall Hazard Ratio (HR),

i.e. the usual risk indicator in survival analysis. Tierney et al. [146] subsequently pro-

vided a step-by-step guidance on how to calculate this overall HR. Their method is

adapted to study the risk differences among well-defined groups (e.g. two treatments,

presence/absence of exposure), but is limited when the study focuses on a continuous

marker. First, different cut-offs may be used to define the groups of comparison and one

can expect the HRs between groups to depend on the cut-offs choices. Consequently,

the assumption that the observed HRs among studies are derived from a single common

HR is misguided. Moreover, the number of groups may also vary across studies, making

meta-analysis of HRs no longer possible.

47
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Another approach, consisting of summarizing the survival curves through a meta-

analytic regression model [27], was recently extended to incorporate random effects [10].

More flexible than the meta-analysis of HRs, the cut-offs may be introduced as cova-

riates. However, the results of such survival models are difficult to interpret in terms of

prognostic capacity. The reason for this is that the HR or the survival probabilities do

not deal with the decision errors based on the marker. This indicator is thus insufficient

to enable a conclusion on predictive capacity. For instance, Buckley et al. [16] demons-

trated that the C-Reactive protein level is independently associated with the incidence

of coronary heart disease by pooling hazard ratios. Nevertheless, the authors also ack-

nowledged that the clinical implication of this finding is less clear, because the pooled

risk ratio does not necessarily measure the usefulness of C-Reactive protein level in re-

classifying intermediate-risk persons. As such, the terms ”correlation” and ”prediction”

are often confused [85]. Heagerty et al. [63] underlined this issue in prognostic studies

and developed the time-dependent Receiver Operating Characteristics (ROCt) theory.

The data interpretation is similar to usual ROC curves, but the methodology has the

advantage of taking the survival process into account.

The aim of this paper was to develop alternative method for literature-based meta-

analysis of predictive markers. The aggregated information, available in the published

studies, was used for the estimation of summary ROCt (SROCt) curves. The next section

describes the method used and section 3 applies this method to a multi-centric cohort of

kidney transplant patients (DIVAT). Each center was considered as one published study

and the SROCt curves were obtained from the corresponding aggregated data. The

results were then compared with the ROCt curves obtained from the individual data.

This analysis constitutes a validation step, since the meta-analysis based on individual

data can be considered as the gold standard [108, 32]. Section 4 applies this method to

the meta-analysis already published by Azambuja et al. [26], the aim being to evaluate

whether KI-67 can be considered as a good prognostic marker for breast cancer survival.

5.2 Estimation of the SROCt Curve

5.2.1 Principles of the method

Let (X, T ) be respectively the biomarker and the time-to-event variables, where

X ∈ < and T > 0. X is measured at the time origin. Without loss of generality, we

assume that the risk of failure increases with X. As regards to the paper by Heagerty

et al. [63] in the Kaplan-Meier based estimation (the authors also proposed alternative

approach based on nearest neighbor estimation), the sensitivity and the specificity at
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cut-off x for a prognosis up to time t are defined as follows :

se(x|t) = {Pr(X > x)− Pr(T > t,X > x)}/Pr(T ≤ t) (5.1)

sp(x|t) = 1− {Pr(X > x, T > t)/Pr(T > t)} (5.2)

The sensitivity is the probability that the biomarker is higher than x for a patient with

failure before time t, i.e. se(x|t) = Pr(X > x|T ≤ t). The specificity is the probability

that the biomarker is lower than x for a patient with no failure before time t, i.e.

sp(x|t) = Pr(X ≤ x|T > t). The assessment of these probabilities are based on the joint

probability Pr(X > x, T > t). In papers focusing on the performances of a prognostic

factor, the results are usually summarized by survival curves after categorization of the

biomarker and/or by HRs derived from a survival regression model. The published HRs

are not helpful in our context because they cannot address the joint probability. Survival

curves provide more information and were used for estimation of SROCt curves.

The distribution of the marker may depend of the study. Let fk(x) be the probability

density function of the marker X in the kth study. We assumed a common underlying

distribution for all studies. The variability between studies was modeled with a random

variable ω : fk(x) = f(x|ωk), where ωk is the value of ω for the kth study. The probability

of observing a marker between a and b for a patient included in the kth study is :

pk(a, b) =

∫ b

a
f(x|ωk)dx (5.3)

Heterogeneous values of ωk would mean the distribution of the marker varies substan-

tially across the studies. We denoted Sk(t|x) the survival function of T in the kth study

for a given value of the marker x. Similarly to the marker distribution, the time-to-event

distribution was modeled as follows : Sk(t|x) = S(t|νk, x), where νk is the value for the

kth study of the random variable ν. There is no reason to expect a correlation among

studies between the distribution of the marker and the distribution of the failure time

according to this marker. ω and ν were thus assumed to be independent. For the kth

study, the bivariate probability, that no failure occurs until t and that the marker lies

in between a and b, is :

Sk(t, a, b) =

∫ b

a
S(t|νk, x)f(x|ωk)dx (5.4)

The sensitivity and specificity at a cut-off x for a prognosis up to time t can be derived

by introducing Expressions 5.3 and 5.4 to Equations 5.1 and 5.2 :

sek(x|t) = {pk(x,+∞)− Sk(t, x,+∞)}/{1− Sk(t,−∞,+∞)} (5.5)

spk(x|t) = 1− {Sk(t, x,+∞)/Sk(t,−∞,+∞)} (5.6)
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These probabilities can be obtained regardless of the study by replacing the random

variables by their mean. The overall SROCt curve for a prognosis up to time t is the

plot of the sensitivity as a function of one minus the specificity for the possible cut-offs

x.

5.2.2 Estimation procedure

Let K equal the number of studies of size Nk (k = 1, ...,K). From published stu-

dies, one can expect to obtain the marker intervals defining the groups, the number of

individuals in each group and the survival curve for each group. The biomarker may be

categorized in different ways. The number of groups in the kth study is denoted Gk.

The gth group (g = 1, ..., Gk) of size Nkg is defined by the marker interval [ck,g−1, ck,g[

with ck,0 = −∞ and ck,Gk = +∞. The observed probabilities of being in the gth group

equal Nkg/Nk and the corresponding observed survival probabilities are measured every

year, month or day depending on the time scale used (Kaplan-Meier survival curves are

usually provided).

The estimation procedure consists of two steps : the parameters of the marker dis-

tribution are first estimated and then the parameters of the survival according to the

marker are assessed. We assume that an appropriate bijective function exists, termed

h(.), which follows a Gaussian distribution :

f(h(x)|ωk) =
1

σ
√

2π
exp
(−(h(x)− µ− ωk)2

2σ2

)
(5.7)

with σ > 0, µ ∈ < and ωk ∼ N(0, σω). µ and σ are the mean and the standard deviation

of h(X). The normality of h(x) was adapted for both of the following applications and

this assumption will hold true in a lot of analyses. However, other distributions can

also be used. We used a flexible survival model in order to avoid any restrictive as-

sumptions. The hazard function associated with S(t|νk, h(x)) was defined as a piecewise

constant function with a specific association of h(X) at each interval [τ0, τ1[, [τ1, τ2[,...

and [τL−1, τL[, with τ0 = 0 and τL = +∞ :

λ(t|νk, h(x)) = exp
(
νk +

L∑
l=0

(βl,1 + βl,2h(x))× 1{t > τl}
)

(5.8)

in which βl,1, βl,2 ∈ < are the regression parameters specific to the interval l and νk ∼
N(0, σν).

To assess the Non-Linear Mixed Models 5.7 and 5.8, we used the R package nlme [124,

116] based on maximization of the restricted log-likelihood. We propose R package SROCt
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is available at www.divat.fr/en/softwares/sroct. Each observation was weighted by

the corresponding number of at-risk individuals (optional argument weights, see section

2.4 for more details). The integrals involved in Equations 5.3 and 5.4 were computed

using the 30-points Gauss-Legendre quadrature.

The area under the estimated SROCt curve was obtained by the trapezoidal rule. It

is impossible to develop an analytic formulation of the confidence interval for these areas.

We proposed a simulation procedure (1000 iterations). At each iteration, the parameter

values were simulated according to their estimated values and standard deviations. The

corresponding areas under the SROCt curve were then computed. The 2.5th and 97.5th

percentiles of the empirical distribution represented the 95% confidence interval (CI95%).

We did not perform non-parametric bootstrap resampling because we needed to resample

the center random effects, as well as the within-group effects.

5.2.3 Checking the validity of the models

Goodness-of-fit was evaluated by plotting the predicted values of the regressions

5.3 and 5.4 versus the observed probabilities. Moreover, the residuals of the model 5.4

were also plotted against the survival time. If extreme residuals were identified, the

corresponding studies were removed from the analysis to test the robustness of the

results.

5.2.4 Extracting the data from published

One can collect the size of each group at baseline, but in contrast to the good

practice for survival plots described by Pocock et al. [117], many papers do not present

the number of at-risk patients over time. We thus assumed that the number of at-risk

patients is unknown during follow-up and we adapted the methodology detailed in the

appendix of the paper by Parmar et al. [111] in order to calculate these numbers. Briefly,

suppose that we want to calculate the number of censored observations between te and

ts in the gth group of the kth study. Let tmaxkg be the corresponding maximum follow-

up time and Rkg(te) the number of at-risk patient at the beginning of the previous

interval. By assuming that the rate of censoring is constant and non-informative, the

number of censoring observations should be close to Rkg(te)(ts−te)/(tmaxkg −ts). Because

the sample size at baseline and the changes in the survival probabilities are observed,

the number of at-risk individuals can be recursively calculated from this baseline. The

survival probabilities can be objectively extracted from a digitalized picture by using

the R packages ReadImages and digitize, as proposed by Poisot [121].
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5.3 Aggregated versus individual estimations

In order to validate the proposed method, we analyzed real data from a French

multi-centric cohort of kidney transplant recipients (DIVAT). The medical objective

was to evaluate whether 1-year serum creatinine (Cr) is a good predictive marker of

graft failure. Cr is a breakdown product and is removed from the body by the kidneys.

If kidney function is abnormal, blood Cr levels increase. Deaths with a functional kidney

or returns to dialysis were considered as graft failures. We considered a sub-population of

4195 adult patients and who had received a first kidney graft between January 1996 and

Jun 2008. Five centers participated : Nantes (n=1375), Nancy (n=797), Paris Necker

(n=1031), Toulouse (n=507) and Montpellier (n=485). A total of 511 graft failures were

observed (346 returns to dialysis and 165 deaths with a functional kidney).

We first performed the usual methodology by Heagerty et al. [63] based on the indi-

vidual data regardless of the transplantation center. This approach is non-parametric,

based on the Kaplan-Meier estimator of survival and on the empirical distribution of

the marker. In order to calculate confidence intervals for the areas under the curves,

1000 bootstrap samples were performed. The 2.5th and 97.5th percentiles of the empiri-

cal distribution represented the limits of the 95% non-parametric bootstrap confidence

interval.

Based on the same database, we constructed an aggregated dataset to perform a

meta-analysis on 5 published mono-centric studies. In order to consistently remain as

close as possible to published papers, we differentially chose the groups according to

the 1-year Cr value, which resulted in 1 center with 5 groups (Q20%, Q40%, ..., Q80%) 1, 2

centers with 3 groups (Q10%, Q90% and Q33%, Q66%) and 2 centers with 2 groups (Q50%).

We chose 4 intervals to model the hazard function 5.8 : τ1 = 2, τ2 = 4 and τ3 = 6 years.

The estimations of the parameters involved in the models 5.7 and 5.8 are presented in

Table (5.1).

These detailed aggregated data are available at www.divat.fr/en/softwares/sroct

for non-R users or in the SROCt package at the same address. The figures with the

corresponding survival curves are also downloadable at this address.

The SROCt curves for a prognosis up to 3, 5 and 9 years after the Cr measure-

ment are presented with continuous lines in Figure (5.1). The areas under these curves

respectively equaled 0.70 (CI95% = [0.61, 0.76]), 0.69 (CI95% = [0.61, 0.73]) and 0.66

(CI95% = [0.59, 0.70]). They were similar to those obtained by the non-parametric ana-

lysis of individual data : 0.72 (CI95% = [0.68, 0.75]), 0.70 (CI95% = [0.66, 0.72]) and

1. Qα% : α%−quantile of the 1-year Cr value.
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Table 5.1: Estimation of the parameters and their standard errors for the analysis of
kidney transplant recipients (standard errors of random effects : σω = 0.03, συk = 0.34).

Estimation Standard Error

µ 4.86 0.01
σ -1.19 0.02
β0,1 -16.11 5.54
β0,2 2.46 1.07
β1,1 0.47 11.24
β1,2 -0.04 2.17
β2,1 3.76 10.81
β2,2 -0.72 2.12
β3,1 3.46 9.82
β3,2 -0.71 1.97

0.64 (CI95% = [0.61, 0.68]). Nevertheless, one can also note that the confidence intervals

for the aggregated estimation were larger. This illustrates the loss of precision when

analyses are performed on summarized data. The Figure (5.2) illustrates the validity of

the model with very small distances between fitted and observed values. One can also

note the homogeneity of residuals according to the survival time.

5.4 The prognostic capacity of KI-67 for patients with

breast cancer

KI-67 is a marker of the proliferative activity of breast cancer, but its prognostic capa-

city is still unclear. In their recent meta-analysis, de Azambuja et al. [26] concluded that

KI-67 positivity conferred a worse survival. This work focused on the 35 evaluable studies

of the relationship between KI-67 and the overall survival. All of these studies provided

a hazard ratio, but only 23 described survival curves according to the level of KI-67.

The aggregated data are exhaustively available at www.divat.fr/en/softwares/sroct.

Survival probabilities were measured every year.

We used the same regression for the survival time (Equation 5.8). However, according

to the higher number of studies and the higher follow-up, we chose 5 time intervals for

modeling the hazard function with τ4 = 8 years. The estimated parameters are presented

in the first columns of Table (5.2). The corresponding SROCt curves for a prognosis up

to 3, 5 and 9 years are presented in Figure (5.3). The corresponding areas equaled

0.63 (CI95% = [0.57, 0.71]), 0.64 (CI95% = [0.56, 0.74]) and 0.65 (CI95% = [0.52, 0.77]).

The left side of the confidence intervals were higher than the non-informative value of

0.50. Therefore, KI-67 appeared to be a significant prognostic marker. Nevertheless, the
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prognostic capacity was limited with important error rates in term of medical decision

making (areas far from the perfect value at 1).

The goodness-of-fit of the models was checked and the graphs are provided in the

Figure (5.4). The studies by Trihia et al. [149] and Railo et al. [126] were associated with

higher residuals in comparison to the other studies. We thus performed the same analysis

without the corresponding observations. The updated parameters are presented in the

last columns of Table (5.2) and the goodness-of-fit in the Figure (5.5). The updated

areas respectively equaled 0.65 (CI95% = [0.61, 0.69]), 0.67 (CI95% = [0.63, 0.73]) and

0.68 (CI95% = [0.64, 0.78]). Because the extreme residuals were removed, the confidence

intervals were smaller. Nevertheless, the values of the areas were closed to the ones

obtained when all the studies are included. Therefore, the clinical conclusions seemed

similar.

Table 5.2: Estimation of the parameters and their standard errors for the analysis of
KI-67 (standard errors of random effects : σω = 0.54 and συk = 0.71 for the analysis
with all studies ; σω = 0.44 and συk = 0.70 for the robustness analysis).

Analysis with all the studies Robustness analysis
Estimation Standard Error Estimation Standard Error

µ 2.56 0.12 2.65 0.10
σ -0.26 0.08 -0.21 0.02
β0,1 -4.31 0.67 -5.72 0.69
β0,2 0.51 0.22 0.75 0.21
β1,1 0.02 1.39 1.57 0.96
β1,2 0.10 0.47 -0.23 0.31
β2,1 -0.57 2.51 -1.88 1.20
β2,2 0.07 0.80 0.54 0.36
β3,1 0.51 3.36 1.60 1.54
β3,2 -0.24 1.11 -0.62 0.52
β4,1 -1.66 3.02 -1.26 1.36
β4,2 0.48 1.00 0.56 0.49

5.5 Discussion

We developed a method to assess time-dependent summary ROC curves from publi-

shed results. This method has three clear advantages over classical meta-analyses based

on HRs [111], survival curves [10] or standard summary ROC curves [102, 153]. First,

even if the interpretation of the hazard ratio is in fact one of the key point of basic

survival, it is difficult to interpret in terms of prognostic capacity. While HR focuses on

group comparisons, the SROCt curve is representative of prognostic capacity across the
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possible cut-offs of a marker. SROCt curves constitute an appropriate way to represent

and quantify the prognostic capacity of a marker. Moreover, they enable the incorpo-

ration of more than 2 groups from the original studies ; all of the available information

is thus used. Second, meta-analyses based on HRs or survival curves require a homoge-

neous definition of groups across the studies included. Beyond the heterogeneity caused

by varying cut-offs, pooling such HRs or survival curves is not meaningful and should

be avoided. The SROCt approach specifically takes into account the number of groups

and their corresponding cut-offs. The proposed method is also adaptable to binary tests

(the cut-off of the marker is fixed) or covariates may be added (in the marker or in the

time distributions in order to avoid identifiability issue). Third, classical summary ROC

curves are also limited to single time-points while the follow-up time may change across

published studies. As such, summary ROC curves are more appropriate for diagnostic

studies [153].

The proposed method is generic and applicable to a large panel of marker distri-

butions and survival models. Of note, the survival model we describe is highly flexible

in comparison to traditional approaches. This avoids a level of arbitrariness for the re-

sults. The goodness-of-fit analysis justifies our choice for both applications. As for every

regression analysis, the results should not be interpreted if the goodness-of-fit plots in-

dicate inadequacy between observed and fitted values. Because the number of works is

significant for a meta-analysis, this information should be used to drive the modeling.

For instance, Dowsett et al. [30] specified that statistical analyses should take account

of the log-normal distribution generally followed by KI-67 measurements. Indeed, this

distribution fully corresponds to the observed data, as illustrated by Figures (4A) and

(5A). Although, the computation can be complex, the results are easily interpretable by

researchers in clinical epidemiology, who are familiar with the ROC principle. Moreo-

ver, the practical use of the recommended procedures is enhanced since an R package is

available.

However, there are limitations to the proposed method. First, as for any ROC curves,

our approach is not appropriate if the relationship between the biomarker and the time-

to-event is not monotonic. This problem can be detected from the published curves :

the survival should decrease (or increase) with the level of the biomarker. The results of

the KI-67 meta-analysis also illustrated that this problem may be detected by plotting

the observed bivariate probabilities against the fitted values (Figure 4-B). Second, the

variance of the area under the SROCt curve is difficult to compute. It needs simulations

of the estimated parameters according to their variance. Another limitation is the mea-

surement of heterogeneity, which is often measured by the I-squared method [68] when a

single-value outcome is meta-analyzed. The problem is more complex when the outcome

is a curve. Here, the heterogeneity is related to the variance of the random effect (σ2
ω



56 Chapitre 5. Time dependent Summary Receiver Operating Characteristics

and σ2
ν). If the structures of the marker distribution and/or the survival models differ

dramatically between studies, our method would not be appropriate (but no method

would be). The last limitation is the calculation of the expected number of at-risk pa-

tients during the follow-up. The method assumes that the censoring rate is constant and

non-informative. It makes necessary assumptions, because many papers only provide

Kaplan-Meier curves without the number of at-risk patients over time, nor the confi-

dence intervals of the curves. In this paper, we have adapted the approach proposed by

Parmar et al. [111]. Nevertheless, other methods exist and can be used as alternatives

[31, 155, 59].

The examples we presented illustrate the utility of our method. In the first example,

the individual patient data from a multi-centric cohort were aggregated using randomly

selected cut-offs. The aim was to compare the time-dependent ROC curves obtained from

the individual data with those obtained from the aggregated data. After this validation,

the aim of the second example was to show the feasibility of the method based on

real aggregated data. The results were concordant with those from the published meta-

analyses but were more informative. The meta-analysis demonstrated the worse overall

survival for breast cancer patients who were positive for KI-67. But this is the first time

that a meta-analysis has demonstrated the small capacity of KI-67 to predict overall

survival.

Acknowledgement

We thank Roche Laboratories for its supporting the DIVAT data bank. This work is

part of the French Transplantation Research Network (RTRS) supported by the ”Fonda-

tion de Cooperation Scientifique CENTAURE” and by grant from the French National

Agency of Research ANR-11-JSV1-0008-01 . We also thank Dr. J Ashton-Chess for edi-

ting the manuscript. We wish to thank members of the DIVAT centers included in this

study : K. Launay, P. Daguin, M. Giral, M. Kessler, M. Ladrière, H. Kreis, C. Legendre,

JP. Soulillou, L. Rostaing, N. Kamar, G. Mourad and V. Garrigue.



5.5. Discussion 57

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−specificity

se
ns

iti
vi

ty

Prognostic up to 3 years
Prognostic up to 5 years
Prognostic up to 9 years

Figure 5.1: SROCt Curves based on aggregated (continuous lines) and ROCt curves
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or return to dialysis up to 3, 5 and 9 years after its measurement.
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Figure 5.2: Check of the goodness-of-fit for the creatinine study. (A) The observed
proportions of patients in the gth interval of the study k versus the fitted proportions
(pk(a, b), equation 3). (B) The observed bivariate probabilities versus the fitted bivariate
probabilities (Sk(t, a, b), equation 4). (C) The residuals of the bivariate probabilities
(Sk(t, a, b), equation 4) versus the times (t).
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Figure 5.4: Check of the goodness-of-fit for the KI-67 study. The points ’∆’ represent the
residuals associated with the studies of Trihia et al. (2003) and Railo et al. (1993). The
points ’o’ represent the residuals associated with the other studies. (A) The observed
proportions of patients in the gth interval of the study k versus the fitted proportions
(pk(a, b), equation 3). (B) The observed bivariate probabilities versus the fitted bivariate
probabilities (Sk(t, a, b), equation 4). (C) The residuals of the bivariate probabilities
(Sk(t, a, b), equation 4) versus the times (t).
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Figure 5.5: Check of the goodness-of-fit for the KI-67 study without the 3 studies with
extreme residuals (Trihia et al., 2003 and Railo et al., 1993). (A) The observed propor-
tions of patients in the gth interval of the study k versus the fitted proportions (pk(a, b),
equation 3). (B) The observed bivariate probabilities versus the fitted bivariate probabi-
lities (Sk(t, a, b), equation 4). (C) The residuals of the bivariate probabilities (Sk(t, a, b),
equation 4) versus the times (t).
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Cut-off estimation and medical decision making based on a

continuous prognostic factor : the prediction of kidney

graft failure.

Foucher Y., Giral M., Soulillou J.P. and Daurès J.P. International

Journal of Biostatistics. 2012 Jan 6 ;8(1).

6.1 Introduction

Cut-off determination is a frequent issue for statisticians. In clinical or epidemiolo-

gical studies, the effect of continuous risk factors are often analyzed respecting a dose-

effect relationship [134]. For example in kidney transplantation, numerous studies de-

monstrated that creatinine clearance is highly correlated with long-term graft survival

[104, 54, 61]. However, it is difficult for clinicians to apply these results in practice as no

cut-off is estimated for a decision. Moreover, from a statistical point of view, it may be

important to categorize continuous covariates when a dose-effect assumption does not

hold.

In order to determine such cut-offs in survival analyses with censored follow-up,

a widely used method is to define a grid and to retain the cut-off associated with the

highest difference between survival curves. However, with such a procedure, investigators

are confronted with the problem of multiple testing. Therefore, authors such as Le

Blanc and Crowley have considered tree methods [90]. These procedures split data by

maximizing the difference in survival between groups, which is commonly measured

by the log-rank test. Contal and O’Quigley have also proposed the maximization of a

statistic, which bears the advantage of avoiding cut-offs located near the extremes [22].

63
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The most recent publication on this topic is based on the generalized maximally selected

statistics [69]. The latter authors have proposed an algorithm for a unified treatment

of different kinds of maximally selected statistics enabling a large number of cut-offs.

The procedure leads to a maximally selected chi-square test, as published by Miller and

Siegmund [99]. The common characteristic of these methods is their independence to

their application. However, risk assessment in medical practice has to take into account

the consequences of the clinician decision.

In this paper, we propose an alternative method for cut-off estimation based on

a decision-making framework. Depending on the application, this method reflects the

impact of prognostic errors (monetary cost, medical gravity, social consequences, etc.)

and takes into account the desired time of the prognostic.

In Section 2, we describe the adaptation of time-dependent ROC curves, initially

defined by Heagerty et al. [63], for the estimation of cut-offs. We define in detail the

ROC analysis because the evaluation of the prognostic capacity of a marker is of prime

importance before the determination of a particular cut-off. Two non-parametric me-

thods are proposed, based on the Kaplan-Meier estimator and on the Akritas nearest

neighborhood estimator. In Section 3, we propose comparing the recent method of Ho-

thorn and Zeileis [69] with the new approaches by simulations. Section 4 applies the

methods to the analysis of kidney transplant recipients. The clinical objectives are the

evaluation of the prognostic capacity of the 1-year creatinine clearance (CrCl) and the

definition of the optimal cut-off to discriminate two groups according to their risk of

failure. Finally, Section 5 discusses the new method and its benefits and limitations.

6.2 Methods

6.2.1 Framework

Using the counting process notation, let D(t) = 1 if the failure occurred before time

t (i.e., T ≤ t) and D(t) = 0 otherwise (i.e., T > t). All patients are free of failure

at the beginning of the study (D(0) = 0). We consider X, measured at t = 0, as a

prognostic marker of the failure time T . By convention, suppose that high values of

X are associated with a high risk of failure. The prognostic test is defined as positive

(patient at risk of failure), if the prognostic marker is higher than a cut-off c. The

methodology associated with this type of prognostic analysis has been recently developed

by Heagerty et al. [63, 64]. The sensitivity is thus the probability of a positive prognostic

test among patients with failure before time t, i.e. P (X > c|D(t) = 1). The specificity is

the probability of a negative prognostic test among patients free of failure before time
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t, i.e. P (X ≤ c|D(t) = 0). The ROC (Receiver Operating Characteristic) curve of a

prognostic at time t represents the sensitivity in function of one minus the specificity

for the different cut-offs c. The ROC curve is monotone non-decreasing for each t. The

accuracy of the marker to predict the failure is measured by the area under the curve

(AUC), independently of the cut-off. In order to find the optimal cut-off, we define a cost

function, C(c|t), which represents the total cost associated with the prognostic test based

on the cut-off c at time t. One can distinguish the number of false positives (patients

with a positive test but free of failure at time t) and the number of false negatives

(patients with a negative test but with a failure before time t), respectively n(fp)(c|t)
and n(fn)(c|t). As a result, the cost function represents the sum of these errors weighted

by their respective costs, C(fp) and C(fn). Thus, we have :

C(c|t) ∝ k × n(fp)(c|t) + n(fn)(c|t), (6.1)

where ∝ means ”proportional to” and where k = C(fp)/C(fn) is the relative importance

of a false positive according to a false positive. Depending on the application, this

function C(c|t) can be determined such that it reflects the monetary impact, the medical

gravity, the social impact, etc. The optimal cut-off is calculated to minimize this cost

function for a given time of prognosis t.

6.2.2 Estimation using the Kaplan-Meier estimator

In the framework above, the sensitivity of the prognostic test with cut-off c at time t

represents the probability of having a positive test {X > c}, given that a failure occurs

before time t. Based on the work of Heagerty et al. [63], the non-parametric estimation

of this probability, seKM (c|t), is :

seKM (c|t) = {1− SKM (t|X > c)}{1− ḠX(c)}/{1− SKM (t)}, (6.2)

where SKM (t|X > c) is the Kaplan-Meier estimator of the survival probability at time t

conditional on {X > c} and ḠX(c) is the empirical distribution function. Respectively,

the estimator of the specificity of a prognostic test with cut-off c at time t, spKM (c|t),
is :

spKM (c|t) = SKM (t|X ≤ c)ḠX(c)/SKM (t) (6.3)

The ROC curve of a prognostic at time t, is the sensitivity seKM (c|t) plotted in function

of one minus the specificity spKM (c|t) for all the possible cut-off c. In order to find the
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optimal cut-off, c̃, the cost function (6.1) can be developed as follow :

C(c|t) ∝ kP (X > c,D(t) = 0) + P (X ≤ c,D(t) = 1)

∝ kP (T > t|X > c)P (X > c) + P (T ≤ t|X ≤ c)P (X ≤ c),

and can be non-parametrically estimated :

CKM (c|t) ∝ kSKM (t|X > c){1− ḠX(c)}+ {1− SKM (t|X ≤ c)}ḠX(c) (6.4)

6.2.3 Estimation using the Akritas estimator

Heagerty et al. [63] also proposed to estimate P (X > c,D(t) = 0) using the nearest

neighborhood estimator initially proposed by Akritas [4]. Respecting the same nota-

tions, let Sλn(c, t) denote the estimation of this bivariate survival probability, where

2λn ∈ (0, 1) represents the percentage of observations that is included in each neighbo-

rhood. This estimator ensures a monotone ROC curve in contrast to the Kaplan-Meier

approach. Moreover, the Kaplan-Meier estimator will be biased if censoring is dependent

on marker, whereas the Akritas estimator will be robust in this situation. The sensitivity

and specificity become :

seλn(c|t) = {(1− ḠX(c))− Sλn(c, t)}/{1− Sλn(−∞, t)} (6.5)

spλn(c|t) = 1− Sλn(c, t)/Sλn(−∞, t) (6.6)

The ROC curve of a prognostic at time t is similarly obtained using the probabilities

(6.5) and (6.6) instead of (6.2) and (6.3). The cost function can be estimated by :

Cλn(c|t) ∝ (k + 1)Sλn(c, t) + ḠX(c) (6.7)

6.2.4 Computation details

We chose the trapezoid method to calculate the area under the curve. In order to

calculate the 95% confidence intervals (CI95%) of the optimal cut-offs and of the areas

under the curves, 1999 bootstrap replications were performed and percentile intervals

were calculated [35].
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6.3 Results from simulations

Both approaches were compared to the Hothorn and Zeiles method [69], which identi-

fies a global cutoff over all failure time and is based on the maximization of the difference

between the survival curves (generalized maximally selected statistics). The false positive

and negative errors are not taken into account. The Hothorn and Zeiles method is thus

completely independent of the application and the decision consequences. Therefore, the

present comparisons are only relevant if no assumption is made about the prognostic

time and the consequences. We arbitrarily chose k = 1 (no preference regarding the

minimization of the false positive or the false negative errors). We also arbitrarily chose

a prognostic time equal to half the maximum observed follow-up time.

We simulated artificial samples for different sample sizes (N=25, 50, 100 and 200).

Let us suppose a variable Z simulated assuming a standard normal. This variable was

used in the 4 following scenarios in order to define the value of X :

1. The times-to-event are simulated according to a proportional hazard model with

a Weibull distribution (scale and shape parameters respectively equal to 1.5 and

0.5). z is the observation of a random variable Z which is a transformation of X.

We assume that the regression coefficient β equals 0.4 (relative risk equals 1.5). A

single cut-off is fixed at 0.5 with Z = 1 if X > 0.5 and with Z = 0 otherwise. The

times of censoring are uniformly distributed between 0 and 15.

2. The times of events are simulated similarly. However, we fix a cut-off in 0.5 with

X = Z if Z > 0.5 and with X = 0 otherwise. In contrast to the scenario #1,

the hazard function does not jump at 0.5. The function is constant before 0.5 and

proportionately increases with the values above 0.5.

3. If Z ≤ 0.5 the times of events are simulated according to a Weibull law (scale and

shape parameters respectively equal to 1.5 and 0.5), but if Z > 0.5 the Exponential

distribution is used (scale and shape parameters respectively equal to 1.5 and 1.0).

Thus, a single cut-off exists at 0.5 but the PH assumption does not hold.

4. The scenario is equivalent to (1) but with X = Z. There is no cut-off.

1000 simulations were performed per scenario and per sample size. The results are

presented in Table (6.1). Globally, the results were very similar regardless of the me-

thod. Below a sample size of 50 individuals, no method was reliable, but the proposed

methodology (Kaplan-Meier or Akritas) offered estimations closer to the true cut-off in

comparison to the Hothorn and Zeileis method. Regardless of the scenario, the variabi-

lity of the estimations using cost function seemed to be lower than those obtained by the

Hothorn and Zeileis method. If no cut-off exists (Scenario #4), the proposed method

estimated cuts-offs close to 0, which separated the sample into two balanced groups. In
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Size H. & Z. K. & M. Akritas

Scenario #1

N = 25 -0.06 (1.07) 0.10 (0.97) 0.11 (0.98)
N = 50 0.13 (1.09) 0.28 (0.83) 0.27 (0.84)
N = 100 0.30 (0.82) 0.36 (0.73) 0.34 (0.69)
N = 200 0.41 (0.51) 0.38 (0.46) 0.38 (0.43)

Scenario #2

N = 25 0.02 (1.20) 0.21 (0.98) 0.18 (1.08)
N = 50 0.25 (1.08) 0.36 (0.90) 0.33 (0.89)
N = 100 0.49 (0.81) 0.41 (0.73) 0.41 (0.69)
N = 200 0.57 (0.50) 0.49 (0.50) 0.49 (0.50)

Scenario #3

N = 25 0.24 (1.05) 0.16 (0.85) 0.17 (0.80)
N = 50 0.36 (1.01) 0.32 (0.63) 0.32 (0.60)
N = 100 0.44 (0.77) 0.40 (0.44) 0.40 (0.40)
N = 200 0.49 (0.37) 0.43 (0.26) 0.43 (0.24)

Scenario #4

N = 25 -0.28 (1.09) 0.05 (0.83) -0.04 (0.81)
N = 50 -0.35 (1.06) 0.00 (0.76) 0.01 (0.74)
N = 100 -0.32 (0.91) -0.01 (0.70) -0.03 (0.67)
N = 200 -0.31 (0.80) 0.01 (0.61) 0.02 (0.60)

Table 6.1: Estimations of the cut-off values according to the scenarios and the sample
sizes. Based on 1000 simulations, the medians (and the corresponding inter-quartile
intervals) are reported.

this scenario, the Hothorn and Zeileis method offered lower estimations.

6.4 Kidney transplant survival data

6.4.1 Data description

The data were extracted from the DIVAT data bank from Nantes Hospital (France),

which is a prospective cohort of kidney transplant recipients. Biological and clinical

data have been recorded since 1990. Specialized clinical research assistants who were

independent to the medical team, computerized the pre- and post-transplant parameters

of each patient transplanted in the center. Recorded data are submitted to an annual

medical cross-audit with a level of error below 1%.

In this paper, we consider a subpopulation of 839 patients more than 18 years of age

and who received a kidney transplant between January 1996 and September 2006. Death

or a return to dialysis mean that the graft failed. The value of the creatinine clearance



6.4. Kidney transplant survival data 69

(CrCl) one year after the transplant is the marker of interest to predict long-term graft

survival. A low CrCl value is associated with a higher risk of graft failure. Note that there

is no reason to justify that a cut-off exists with a discontinuity of the risk at this value.

However, clinicians have to take decisions to classify the patients according to their

risk of failure. Usually, clinicians consider a CrCl above 40 ml/min as an indication of

a poor prognosis. A cut-off of 40 ml/min is obtained as half of the lower CrCl limit

for a healthy person (80 ml/min). When one kidney is transplanted to a patient, one

expects a CrCl of half the normal values. To our knowledge, no quantitative study has

been performed to justify this threshold according to the risk of failure. Based on the

Kaplan-Meier analysis of graft survival, Hariharan et al. have shown that a creatinine

level of more than 1.5 mg/dL is associated with a poor graft outcome, compared to

levels below that value [61]. The focus of interest is whether this cut-off is optimal for

discriminating two groups of patients according to their risk of graft failure.

Our objective was to determine the optimal cut-off of the CrCl value collected 1 year

after the transplantation for predicting graft survival. The origin of the study (t = 0)

is thus at 1 year after the transplantation and concerns only patients with a functional

kidney at 1 year. Return to dialysis, death and censored patient within the first year of

transplantation were not included in the analysis. The survival time of interest is thus

the time between the first anniversary of the transplantation and the graft failure or

the death of the patient. In the following developments, we will principally choose a

prognostic time of up to 4 or 8 years after the CrCl measurement (t = 4, 8). Different

formulae are available to calculate the CrCl. We used the Modification of Diet in Renal

Disease version [91]. The mentioned data are provided for reanalysis and verification

(http ://www.divat.fr/).

6.4.1.1 Study of the prognostic accuracy

Figure 6.1 shows the ROC curves based on the Kaplan-Meier or on the Akritas

estimators. It illustrates the ability of the CrCl to predict a failure up to 4 and up to 8

years after the first anniversary of the transplantation. In agreement with Heagerty et

al. [63], both estimators gave similar results. Using the Akritas version, the AUC at 4

years was 0.79 (CI95% = [0.70, 0.85]) versus 0.73 (CI95% = [0.69, 0.87]) at 8 years. Using

the Kaplan-Meier estimator, the AUC at 4 years was 0.80 (CI95% = [0.69, 0.87]) versus

0.70 (CI95% = [0.50, 0.82]) at 8 years. Regardless of the estimators and as expected, the

CrCl was a better prognostic variable for a short-term prognostic.
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Figure 6.1: The ROC curves estimated for evaluating the capacity of the CrCl to predict
a graft failure or the death of the transplanted recipient up to 4 years (A) and 8 years
(B)
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6.4.1.2 Determination of an optimal cut-off

If the objective of the cut-off is to discriminate all the events with a minimum of

errors, then k should be equal to 1 (the cost of a false negative is equivalent to the cost of

a false positive). However, in such a case, the cut-off can appear to be disconnected from

the real medical issue. In our application, the medical consequences of a false negative

are much more serious than the consequences of a false positive. The relative weight

k is assumed at 1/9. We used the approach of Vickers and Elkin to determine this

ratio [152]. Consider that the follow-up of the at-risk patients is more frequent (every 3

months) in comparison with the follow-up of the risk-free patients (every year). If the

probability of failure is close to 1, all clinicians will decide on an intensive follow-up. If

the probability of failure is close to 0, all clinicians will decide on a less intensive follow-

up. After discussions, clinicians defined the disease probability for which the decision is

unsure at 10%. In other words, if the probability of a graft failure is below 10%, they

accept to increase the length of the intervals between two visits. Above 10%, they accept

to decrease this length. Their decision appears unsure at about 10% and Vickers and

Elkin demonstrated that the relative harms of a false positive and a false negative is

thus equal to 10/(100-10) [152].

Figure 6.2 represents the optimal cut-offs for k = 1/9, for both estimators and for all

the prognostic times. Consider a prognostic up to 4 years after the CrCl measurement,

which corresponds to the time origin, 1 year after the transplantation. The optimal

cut-off equals 31.4 ml/min (CI95% = [26.7, 33.9], Akritas estimator). For a prognostic

up to 8 years after the CrCl measurement, the optimal cut-off also equals 31.4 ml/min

(CI95% = [27.7, 34.1], Akritas estimator). One can see that these estimations are different

from the usual cut-off of 40 ml/min. However, the cut-offs do not vary according to the

prognostic time. The results based on the Kaplan-Meier estimator are very similar.

We did not compare our results with the Hothorn and Zeileis method, because we

chose the specific value of k and the specific time of prognosis. The comparison would

not be relevant.

6.5 Discussion

In medicine, it is useful to determine a decision cut-off of prognostic markers. We

have proposed a method in order to define such thresholds from time-dependent data

where the failure may be censored.

We first proposed to validate the methodology using simulated data and comparing

the results with the recent method of Hothorn and Zeileis [69]. This approach is today
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Figure 6.2: Optimal cut-offs depending on both estimators (Kaplan-Meier and Akri-
tas) for k = 1/9. The cut-off estimations are associated with the corresponding 95%
confidence interval.
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a reference in traditional statistical analysis : the principal objective is the study of the

correlation between risk factor and time-to-event and the estimation of cut-off associa-

ted with the lower p-value (null hypothesis that the hazard ratio equals 1). With the

present approach, we distinguish the risk factor analysis from the prognostic analysis

where the cut-off estimation needs to be adapted to the medical question. Therefore, for

a relevant comparison of the methods, no assumption was made about the consequences

of the prognostic decision. The objective of these simulations was to validate our me-

thodology in this context. Regarding the simulation results, this objective was achieved.

However, this does not mean that the proposed methodology is better. As explained,

the methodologies should not be applied in the same context.

In accordance with Gail and Pfeiffer [52], we believe that existing methods are ir-

respective of the intended application. Our proposed approach is more adequate in the

context of medical decision making. Two possible modulations can be considered in or-

der to obtain a cut-off close to the expectations of clinicians. Firstly, we can calculate

the predictive accuracy and the cut-off value according to the required time of the prog-

nosis. This distinction is of prime importance since a marker could be informative for

early events, but not so useful for a long-term prediction. Our application illustrated

this statement. Moreover, the fixing of the prognostic time is very important since the

gravity of error may be different if it appears just after the decision or if it appears a

long time after. From a statistical point of view, dichotomization of the survival time of

the proposed method may lead to a loss of information. However, regarding the practice

of the medical decision, determining the prognostic time is important.

Secondly, the concrete consequences of decision errors based on the cut-off can be

taken into account. For example in transplantation, clinicians prefer to wrongly predict

a future failure as opposed to wrongly predict the survival of the graft. This second

error is only associated with a more intensive but useless follow-up. The priority is thus

to minimize the number of false negatives (k < 1). The weights of both errors should

be defined according to experts. The methodology proposed by Vickers and Elkin can

be used to help this definition [152]. Even if no idea about the weights results from the

discussion, the non-informative choice is always possible (k = 1).

The simulations demonstrated the good capacity of the methods to estimate the

existing cut-off. One can ask the relevance of these estimations when no cut-off exist

(scenario #5). However, in the medical practice, decisions have to be made even if no

cut-off exists. This is the case in our application : the risk of graft failure decreases

continuously with an increase in CrCl. Nevertheless, clinicians have to make decisions

daily based on this marker.

A limitation of the proposed methodology is that no adjustment is possible to take
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into account confounding factors. The cut-off value can vary according to other deter-

minants. However, based on the proposed nonparametric methodology, a solution is to

perform a stratified analysis. To avoid the traditional limitations associated with strati-

fied analysis, it may be interesting to develop a multivariate approach, semiparametric

method can be considered.

Finally, it may also be of interest to generalize the method to multiple variables and

to consider the marker as time-dependent. We are in the process of working on this type

of extension, in particular based the recent paper by Zheng and Heagerty [161].
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Time-dependent ROC analysis for a three-class prognostic

with application to kidney transplantation

Foucher Y, Giral M, Soulillou JP and Daurès JP.

Statistics in Medicine. 2010 Dec 30 ;29(30) :3079-87.

7.1 Introduction

ROC graphs have long been used in signal detection theory and are now popular in

the study of continuous markers for a binary diagnostic [162]. Given a decision threshold,

the sensitivity and specificity are the basic measurements of the accuracy of the cor-

responding diagnostic test. As the threshold shifts, so do the sensitivity and specificity.

The receiver operating characteristic (ROC) curve is a plot of the sensitivity versus one

minus the specificity, for all possible cut-off points.

Even through this method is very useful for many applications, two significant limi-

tations can be observed. Firstly, the disease status is considered as a fixed outcome. This

approach cannot thus be used for a long-term prognostic with possible censored times.

Heagerty, Lumley and Pepe proposed recently an adaptation, known as a time-dependent

ROC curve [63]. Based on the estimators of Kaplan-Meier or Akritas, this method takes

into account the censoring of the outcome. Since the writing of the first paper, Zheng

and Heagerty have also proposed certain considerable extensions, particularly with the

analysis of longitudinal markers [160, 161].

Secondly, only one binary disease can be studied using classic methodology. However,

in numerous medical applications, the outcome of the diagnosis is more complex. For

example in cancerology, the remission of the disease may be stable or may progress

75
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either until relapse or death. Mossman has described a method for expanding the scope

of ROC analysis and for describing diagnostic accuracy when there are three possible

outcomes [103]. We can also cite the recent works of Heckerling [65] or He et al. [62], but

little attention has been given to extending for time-dependent outcomes. The fact that

the problem of competing risks is a complex issue in survival analysis. There have been

extensive discussions in the literature on the statistical analysis of competing risk data

since the first work of Prentice et al. [123] until today with the paper by Li, Elashoff

and Li [93] for example. But only Pepe et al. [112] proposed a brief review paper with

one part on competing risk and time dependent ROC analysis. Very recently, Saha

and Heagerty [132] have also developed time-dependent ROC curves in the presence of

competing risks.

In this article, we propose an extension of the ROC concept to the prognostic of

three alternative evolutions. The prognostic marker is measured at the beginning of the

follow-up for a long-term prediction, which is possibly censored. We use an extension

of the competing risk models with the semi-markovian approach. The interest of this

method is the division of the process modeling into two parts : the time of occurrence

of the failure and the type of the failure [113, 49]. As we demonstrate in the following

developments, this division is very useful to compute the sensitivity and the specificity

associated with each type of failure. We can define two alternative ROC curves with

cause-specific or marginal estimations.

These developments are motivated by the analysis of kidney transplant recipients.

The objective of this application is to evaluate the accuracy of the 1-year creatinine

clearance (CrCl) for the prediction of a return to dialysis or the death of a patient.

This study has already been conducted by Kaplan, Schold and Meier-Kriesche [80], who

concluded that CrCl does not have a sufficient predictive value to serve as a reliable

predictive test for graft loss or patient death. However, these authors used the basic

ROC method for the binary diagnostic test without censoring, which is unsuitable for

this application where three prognostic alternatives are time-dependent.

7.2 Methods

7.2.1 The semi-markovian regression

Let T the time of the first event between two competitive failures X (X = {1, 2}) and

Y the marker value at the origin of the follow-up (Y ∈ <). Let Pi denote the probability

that the first failure is i (i = 1, 2). Since we can observe two possible failures, we

have P1 = 1 − P2 ∈ [0, 1]. The logistic function can be used to insure this property :
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P1 = exp(α)/{1+exp(α)} and P2 = 1/{1+exp(α)}, ∀α ∈ <. In practice, the probability

Pi (i = 1, 2) represents the proportion of patients who fail from cause i when the time

tends to ∞. If a large part of the sample is right-censored, these probabilities Pi should

not be interpreted.

These probabilities do not deal with failure times. Thus, according to the semi-

markovian property [113], we define the survival function specific to the transition into

the failure i, Si(t) = P (T > t|X = i). Based on these definitions and the Bayes’ theorem,

we can deduce the well-known net survival of competing risk models : P (T > t,X = i) =

Pi Si(t). Moreover, in order to accommodate the right-censoring, the marginal survival

is deduced from the law of total probability : P (T > t) =
∑

i Pi Si(t).

Under the proportional hazard assumption, Si(t|Y = y) = S0i(t)
exp(βiy), where S0i(t)

is the baseline survival function specific to the failure i and βi is the regression parameter

associated with the marker Y . In the following developments, we will note Zi = βiY , the

score associated with the failure i. Notice that the risk of failure i increases with Zi. The

main advantage of this regression is to allow the inclusion of a vector of variables into

Y and thus to obtain a composite score. Let tj denote the time of the last observation

of the subject j (j = 1, ..., N) and zij = βiyj denotes the subject’s score associated with

the failure i (i = 1, 2). Thus, the log likelihood of such a sample is defined by :

logV =
N∑
j=1

{
2∑
i=1

δij

{
log(Pi) + log(λ0i(tj)) + zij − exp(zij)Λ0i(tj)

}

+
(

1−
2∑
i=1

δij

)
log

( 2∑
i=1

PiS0i(tj)
exp(zij)

)}
(7.1)

where δij equals 1 if the end of the follow-up consists of failure i for the subject j and 0

for a right-censoring. Based on the second part of this function, the methodology accom-

modates censoring. λ0i and Λ0i are the baseline hazard and cumulative hazard functions

derived from S0i. Log-Minus-Log survival plots are used to determine if baseline hazard

functions are proportional. For more details and explanations on this approach, you can

see the work of Foucher et al. [49].

7.2.2 Evaluations of the prognostic performances

7.2.2.1 Sensitivity and specificity

The cause-specific definition - Based on the previous notations, we suppose

that {Zi > ciτ} corresponds to the subgroup at risk of failure i before the time τ . ciτ

represents the threshold of this prognostic test. The sensitivity (se) and the specificity
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(sp) of the score Zi for the prediction of the failure i, i.e., P (Zi > ciτ |T ≤ τ,X = i) and

P (Zi ≤ ciτ |T > τ,X = i) are equal to :

sei(ciτ |τ) =

∫ ∞
ciτ

(1− Si(τ |zi))gi(zi)dzi
/∫ ∞

−∞
(1− Si(τ |zi))gi(zi)dzi (7.2)

spi(ciτ |τ) =

∫ ciτ

−∞
Si(τ |zi)gi(zi)dzi

/∫ ∞
−∞

Si(τ |zi)gi(zi)dzi (7.3)

where gi(zi) is the probability density function of the score zi. In practice, the sensitivity

represents the probability of being at risk given that a failure i occurs before time τ .

Respectively, the specificity represents the probability of not being at risk given that a

failure i does not occur before time τ . The choice of τ needs to be made with caution,

within the observation period in which the number of patients remains sufficient, in

order to avoid any prediction or expected result.

The exact time of failure may be censored before time τ , therefore one cannot esti-

mate these quantities by simple proportions (i.e. se would be the proportion of positive

tests among patients with a failure i before time τ). These equations are based on the

previous semi-Markov model (demonstrations are detailed in Appendix A) that deals

with censored trajectories. Saha and Heagerty [132] recently proposed an alternative

definition of specificity where the control group is {T > τ}, i.e. patients without any

failure before τ . Based on this definition, the aim is to evaluate the capacity of the

marker to discriminate the patients with failure i before τ from those with no failure up

to τ . The aim of the present cause-specific approach is rather than the discrimination

from the patients without the failure i up to τ .

The corresponding cause-specific ROC curve for a prognostic at time τ , called

ROCi(τ), plots the se (7.2) in relation to one minus the sp (7.3) for the different cut-

points ciτ . The accuracy of the marker to predict the presence/absence of the failure i is

measured by the area under the ROCi(τ) curve, called AUCi(τ). AUCi(τ) is calculated

using the trapezoid method. The confidence intervals of AUCi(τ) are obtained from

1000 bootstrap replications. The 2.5th and 97.5th percentiles of the empirical distribu-

tion represent the limits for the 95% bootstrap percentile confidence interval (CI95%).

The marginal definition - In order to evaluate the performances of both scores

to globally predict a failure, we also define the marginal se and sp. The first is the

probability that at least one of the two scores is higher than its respective cutpoint,

given that one of the two failures occurs before the prognostic time. The second is the

probability that both scores are less than or equal to their respective threshold, given

that no failure occurs before the prognostic time. These marginal definitions allow to

evaluate if the marker Y is capable to predict at least one of the failures. We demonstrate
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(Appendix A), that these quantities can be respectively estimated by :

se(cτ |τ) = 1−
{ 2∑
i=1

Pi

∫ ωi

−∞
(1− Si(τ |zi))gi(zi)dzi

}

×
{ 2∑
i=1

Pi

∫ ∞
−∞

(1− Si(τ |zi))gi(zi)dzi
}−1

(7.4)

sp(cτ |τ) =

{ 2∑
i=1

Pi

∫ ωi

−∞
Si(τ |zi)gi(zi)dzi

}/{ 2∑
i=1

Pi

∫ ∞
−∞

Si(τ |zi)gi(zi)dzi
}

(7.5)

where cτ = (c1τ , c2τ ), ω1 = min(c1τ , γ
−1c2τ ) and ω2 = min(γc1τ , c2τ ), with γ = β1/β2 >

0. These estimators are thus valid if β1 and β2 have the same sign, i.e., the marker Y is

a protective or a risk factor for both failures. This case is the more frequent in medical

applications. However, if Y has an opposite effect between both failures (γ < 0), the

corresponding equations are presented in Appendix C.

The marginal ROC curve, ROC(τ), and the its area under, AUC(τ) are obtained

similarly to those obtained previously, but using the marginal se (7.4) and sp (7.5)

instead of the se (7.2) and sp (7.3) of the score i.

7.2.2.2 Positive and negative predictive values

The main advantage of se and sp is their independence from the incidences of the

failures. However, it is also important to study the real relevance of the prognostic marker

in a given population, particularly when the study is conducted using a representative

sample. For this purpose, the positive and negative predictive values (ppv and npv) can

be informative.

The cause-specific definition - The ppv associated with the failure i for a pro-

gnostic at time τ is the probability that this failure occurs before τ for patients with

a positive test {Zi > ciτ}. The npv is the probability that this failure does not occur

before τ for patients with a negative test {Zi ≤ ciτ}. We demonstrate in Appendix B

that :

ppvi(τ |ciτ ) =

∫ ∞
ciτ

(1− Si(τ |zi))gi(zi)dzi
/∫ ∞

ciτ

gi(zi)dzi (7.6)

npvi(τ |ciτ ) =

∫ ciτ

−∞
Si(τ |zi)gi(zi)dzi

/∫ ciτ

−∞
gi(zi)dzi (7.7)

The marginal definition - We also define the marginal ppv and npv, which globally

evaluate the performances of both scores. The marginal ppv is the probability that a

failure occurs before the prognostic time for patients with at least one positive test.
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The marginal npv is the probability that no failure occurs before the prognostic time

for patients with both negative tests. If γ is positive (Appendix B), these quantities are

equal to :

ppv(τ |cτ ) =

{ 2∑
i=1

Pi

∫ ∞
ωi

(1− Si(τ |zi))gi(zi)dzi
}/{∫ ∞

ω1

g(z1)dz1

}
(7.8)

npv(τ |cτ ) =

{ 2∑
i=1

Pi

∫ ωi

−∞
Si(τ |zi)gi(zi)dzi

}/{∫ ω1

−∞
g(z1)dz1

}
(7.9)

7.3 Analysis of kidney transplant recipients

The clinical objective is to study the accuracy of the 1-year CrCl for predicting the

evolution of kidney transplant recipients until the 6th anniversary of transplantation

(intermediate prognostic) and until the 10th anniversary of the transplantation (long-

term prognostic). The origin of the follow-up (t = 0) being the first anniversary of

transplantation, the prognostic times τ are equal to 5 and 9 years. At any time during

the follow-up, a patient can occupy one of the following three states : stable with a

functional kidney, returned to dialysis (X = 1) or died with a functional kidney (X = 2).

The data are extracted from the DIVAT data bank, a French prospective study of kidney

transplant recipients. The sample is made up of 2635 patients of more than 18 years of

age and who received a kidney graft between January 1996 and September 2006. 215

patients returned to dialysis and 95 died with a functional kidney. The CrCl, calculated

with the MDRD (Modification of Diet in Renal Disease), is dependent on the creatinine

and takes into account recipient age and gender [91]. At 1-year, the mean CrCl is 50.9

ml/min (SD = 18.0).

7.3.1 Modeling assumptions

The last section provides a general framework for the three-class prognostic. However,

depending on the analysed data, assumptions about the modeling must be made. We

have used the Nelder-Mead algorithm to maximize the log likelihood function (7.1) and

to compute the corresponding Hessian matrix (optim function in R). All the calculations

of integrals are based on a simple trapezoidal rule.
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Table 7.1: Parameters of the semi-markovian model (logV = −1505.13)

Parameters Estimations Standard Deviations p-values∗

α 0.41 0.59 .
σ1 2.31 0.69 .
ν1 1.30 0.08 .
σ2 18.35 9.33 .

β1 -0.06 0.01 <0.0001
β2 -0.02 0.01 0.0075
∗ Null hypothesis : the parameter is null (Wald test)

7.3.1.1 Distributions of the survival times

We have used the generalized Weibull distribution to fit the baseline survival func-

tions : S0i(t) = exp(1 − (1 + (t/σi)
νi)1/θi) with νi > 0, σi > 0 and θi > 0. This

flexible 3-parameter distribution makes it possible to fit non-monotonic hazard func-

tions : ∪− or ∩−shaped [14]. It can be noticed that if θi = 1, the survival function is

Weibull-distributed. Moreover, if νi = 1 the hazard function is constant (Exponential

distribution).

A fully parametric approach is taken in the paper. This choice is motivated because

we have already shown the adequacy of this 3-parameter Weibull distribution to the

kidney transplant recipients survival [46] and because the equations (2) to (10) are easy

to compute in comparison with a semiparametric or a nonparametric choice.

7.3.1.2 Distribution of the scores

Contrary to the distributions of the survival times, the distributions of the scores do

not comply with any classic parametric law. We use a Gaussian kernel density estimator

with 1000 points (density function in R).

7.3.2 The survival model

The estimated parameters of the semi-markovian model are described in Table (7.1).

The corresponding log-likelihood equals -1505.13. The flexibility of the generalized Wei-

bull distribution is useless compared to the retained distributions : Weibull for the times

until a return to dialysis and Exponential for the time until a death (likelihood ratio

statistic, null hypothesis θ1 = ν2 = θ2 = 1, p > 0, 05). These results demonstrate the

adequacy of the parametric approach.

The 1-year CrCl is significantly associated with both failures. The score z1 equals -
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Figure 7.1: ROC curves for a prognostic until the 10th anniversary of transplantation

0.06×CrCl and the score z2 equals -0.02×CrCl. High values of these scores are associated

with high risk of the corresponding failure. More precisely, for patients returning to

dialysis, an increase of 10 ml/min divides the risk by 1.8 (p < 0, 0001). For the same

difference, the division of the risk of failure is 1.2 for death (p = 0, 0075).

7.3.3 Prognostic performances of the CrCl

7.3.3.1 Prognostic up to 9 years

Figure (7.1) describes the ROC curves for this prognostic period, i.e., ROC1(9),

ROC2(9) and ROC(9). Even if the CrCl is significantly associated with both failure

times (p<0.05), it can be observed that the prognostic performance of this marker is

clearly better for the return to dialysis (ROC1(9) = 0.81, IC95% = [0.75, 0.85]) compared

to death (ROC2(9) = 0.62, IC95% = [0.55, 0.69]). Globally, the CrCl remains a good

marker to predict one of the two failures (ROC(9) = 0.75, IC95% = [0.71, 0.78]).
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Figure 7.2: ROC curves for a prognostic until the 6th anniversary of transplantation

7.3.3.2 Prognostic up to τ = 5 years

The prognostic capacities of CrCl are similar to the results obtained for τ = 9

years (Figure 7.2). This similarity can be explained by the constant relationship bet-

ween the CrCl and the hazard functions regardless of time (hazard proportionality).

More precisely, the area under the ROC curve specific for return to dialysis equals 0.79

(IC95% = [0.75, 0.83]) and the area under the ROC curve specific for death with a func-

tioning graft equals 0.62 (IC95% = [0.55, 0.68]). The marginal capacity of the CrCl to

predict both failures is naturally in between (ROC(5) = 0.74, IC95% = [0.70, 0.77]).

7.4 Discussion

This paper proposed a method for a three-class and time-dependent prognostic ana-

lysis. This methodology was applied to the prognostic of kidney transplant recipient. We

demonstrated that the CrCl constitutes an acceptable marker of return in dialysis but it

cannot be used to predict death with functioning graft. These results are very different

from those obtained by Kaplan, Schold and Meier-Kriesche [80]. The latter authors used

traditional ROC curves unsuitable for analising time-dependent competing failures.
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Saha and Heagerty [132] recently proposed another approach to evaluate the pro-

gnostic capacity of a marker in this context of competing events. They considered two

measurements regarding the study of incident cases (probability that the failure occurs

at a selected time) or cumulative cases (probability that the failure occurs before a selec-

ted time). Our proposed methodology is comparable regarding this second measurement.

However, the main difference concerns the definitions of the sensitivities and specifici-

ties. In the paper of Saha and Heagerty, two sensitivities are estimated because two

cases are defined (X = 1 or X = 2). In parallel, a single specificity is estimated because

the control group represents patients without any failure. Both resulting ROC curves

respectively represent the capacity of the marker to discriminate between (i) patients

who will fail for the first cause (X = 1) and those who will have no failure, (ii) patients

who will fail for the second cause (X = 2) and those who will have no failure. In our

paper, we distinguish two definitions. In the cause-specific definition, two sensitivities

are also defined for both cases (X = 1 or X = 2) but two control groups are respectively

defined : patients without failure X = 1 and patients without failures X = 2. Both

resulting ROC curves respectively represent the capacity of the marker to discriminate

between (i) patients who will fail or not for the first cause (X = 1), (ii) patients who will

fail or not for the second cause (X = 2). Additionally, we proposed a marginal definition

where the cases are the patients who will fail (regardless of the cause) and the control

group is the patients without any failure. The corresponding ROC curve represents the

capacity of the marker to discriminate between patients who will fail or not (regardless

of the cause). From our modeling, it is thus possible to compute the ROC curves defi-

ned by Saha and Heagerty [132] by plotting the cause-specific sensitivities against the

marginal specificities.

Regarding our available data, we have made certain modeling choices (proportio-

nality of hazards and generalized Weibull distribution) and we have tested if these

assumptions hold true. Other approaches for modeling the survival process and the

markers are also feasible. For example, even though the parametric approach seems ade-

quate in our application, the baseline survival function could have been estimated by a

non-parametric method [77] and the marker could have been introduced using the acce-

lerated failure time approach. One could also consider using a semi-parametric model,

which could also be applied to estimate time-dependent sensitivity and specificity [138].

However, the general framework remains independent from these modeling assumptions.

A way of improvement would be to allow the marker to affect the probabilities of having

events of type 1 versus 2, i.e. Pi (i = 1, 2). This natural consideration is nevertheless

associated with a problem of identifiability between the effects of the marker on the two

parts of the semi-Markov process.



7.4. Discussion 85

Acknowledgements

We thank the Roche Laboratory for its support of the DIVAT data bank and Dr J.

Ashton-Chess for editing the manuscript. This work is a part of the French Transplanta-

tion Research Network (RTRS) supported by the “Fondation de Cooperation Scientifique

CENTAURE”.

Appendix of the papers by Foucher et al. (SIM, 2010)

Appendix A : Demonstrations of sensibilities and specificities

– The se of the score Zi for the prediction of the failure i :

sei(ciτ |τ) = P (zi > ciτ |T ≤ τ,X = i)

= P (zi > ciτ , T ≤ τ |X = i)/P (T ≤ τ |X = i)

=

∫ ∞
ciτ

(1− Si(τ |zi))gi(zi)dzi
/∫ ∞

−∞
(1− Si(τ |zi))gi(zi)dzi

– The sp of the score Zi for the prediction of the absence of failure i (Equation 3) :

spi(ciτ |τ) = P (zi ≤ ciτ |T > τ,X = i)

= P (zi ≤ ciτ , T > τ |X = i)/P (T > τ |X = i)

=

∫ ciτ

−∞
Si(τ |zi)gi(zi)dzi

/∫ ∞
−∞

Si(τ |zi)gi(zi)dzi

– The marginal se of both scores for the prediction of at least one failure (Equa-

tion 4) :

se(cτ |τ) = P (A|T ≤ τ)

= P (A, T ≤ τ)/P (T ≤ τ)

= 1− P (A, T ≤ τ)/P (T ≤ τ)

where cτ = (c1τ , c2τ ), A = {z1 ≤ c1τ , z2 ≤ c2τ} and A is not A. Using the law of

total probability, we have :

se(cτ |τ) = 1−
{ 2∑
i=1

PiP (A, T ≤ τ |X = i)

}/{ 2∑
i=1

PiP (T ≤ τ |X = i)

}
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However, since z1 = z2/γ, with γ = β2/β1, we obtain if γ > 0 :

se(cτ |τ) = 1−
{ 2∑
i=1

PiP (zi ≤ ωi, T ≤ τ |X = i)

}

×
{ 2∑
i=1

PiP (zi > −∞, T ≤ τ |X = i)

}−1

= 1−
{ 2∑
i=1

Pi

∫ ωi

−∞
(1− Si(τ |zi))gi(zi)dzi

}

×
{ 2∑
i=1

Pi

∫ ∞
−∞

(1− Si(τ |zi))gi(zi)dzi
}−1

where ω1 = min(c1τ , γ
−1c2τ ) et ω2 = min(γc1τ , c2τ ).

– The marginal sp of both scores for the prediction of the absence of failure (Equa-

tion 5) :

sp(cτ |τ) = P (A|T > τ) = P (A, T > τ)/P (T > τ)

Thus, based on the same notations as the marginal se, we obtain :

sp(cτ |τ) =

{ 2∑
i=1

PiP (A, T > τ |X = i)

}

×
{ 2∑
i=1

PiP (T > τ |X = i)

}−1

=

{ 2∑
i=1

PiP (zi ≤ ωi, T > τ |X = i)

}

×
{ 2∑
i=1

PiP (zi > −∞, T > τ |X = i)

}−1

=

{ 2∑
i=1

Pi

∫ ωi

−∞
Si(τ |zi)gi(zi)dzi

}

×
{ 2∑
i=1

Pi

∫ ∞
−∞

Si(τ |zi)gi(zi)dzi
}−1
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Appendix B : Demonstrations of the positive and negative predictive

values

– The ppv of the score Zi for the prediction of the failure i (Equation 6) :

ppvi(τ |ciτ ) = P (T ≤ τ |zi > ciτ , X = i)

= P (T ≤ τ, zi > ciτ |X = i)/P (zi > ciτ )

=

∫ ∞
ciτ

(1− Si(τ |zi))gi(zi)dzi
/∫ ∞

ciτ

gi(zi)dzi

– The npv of the score Zi for the prediction of the absence of failure i (Equation 7) :

npvi(τ |ciτ ) = P (T > τ |X = i, zi ≤ ciτ )

= P (T > τ, zi ≤ ciτ |X = i)/P (zi ≤ ciτ )

=

∫ ciτ

−∞
Si(τ |zi)gi(zi)dzi

/∫ ciτ

−∞
gi(zi)dzi

– The marginal ppv of both scores for the prediction of at least one failure (Equa-

tion 8) :

ppv(τ |cτ ) = P (T ≤ τ |A)

= P (T ≤ τ, A)/P (A)

= {P (T ≤ τ)− P (T ≤ τ,A)}/{1− P (A)}

=

{ 2∑
i=1

PiP (T ≤ τ |X = i)−
2∑
i=1

PiP (T ≤ τ, zi ≤ ωi|X = i)

}

×
{

1− P (z1 ≤ ω1)

}−1

= P (z1 > ω1)−1
2∑
i=1

PiP (T ≤ τ, zi > ωi|X = i)

=

{ 2∑
i=1

Pi

∫ ∞
ωi

(1− Si(τ |zi))gi(zi)dzi
}/{∫ ∞

ω1

g(z1)dz1

}

– The marginal npv of both scores for the prediction of the absence of failure (Equa-
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tion 9) :

npv(τ |cτ ) = P (T > τ |A)

= P (T > τ,A)/P (A)

= P (z1 ≤ ω1)−1
2∑
i=1

PiP (T > τ, zi ≤ ωi|X = i)

=

{ 2∑
i=1

Pi

∫ ωi

−∞
Si(τ |zi)gi(zi)dzi

}/{∫ ω1

−∞
g(z1)dz1

}

Appendix C : Special developments for γ < 0

The marginal se and sp are valid if the parameters of the semi-markovian model

meet the condition γ > 0. However, if the signs of β1 and β2 are different, then :

se(cτ |τ) = 1−
{ 2∑
i=1

Pi

∫ ciτ

κi

(1− Si(τ |zi))gi(zi)dzi
}

×
{ 2∑
i=1

Pi

∫ ∞
−∞

(1− Si(τ |zi))gi(zi)dzi
}−1

sp(cτ |τ) =

{ 2∑
i=1

Pi

∫ ciτ

κi

Si(τ |zi)gi(zi)dzi
}

×
{ 2∑
i=1

Pi

∫ ∞
−∞

Si(τ |zi)gi(zi)dzi
}−1

where κ1 = c2τ/γ and κ2 = γc1τ .

In parallel, the ppv and npv are rewritten as follows :

ppv(τ |cτ ) =

{ 2∑
i=1

Pi

∫ ∞
−∞

(1− Si(τ |zi))gi(zi)dzi

−
2∑
i=1

Pi

∫ ciτ

κi

(1− Si(τ |zi))gi(zi)dzi
}

×
{

1−
∫ c1τ

κ1

g(z1)dz1

}−1

npv(τ |cτ ) =

{ 2∑
i=1

Pi

∫ ciτ

κi

Si(τ |zi)gi(zi)dzi
}/{∫ c1τ

κ1

g(z1)dz1

}
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A flexible semi-Markov model for interval-censored data

and goodness-of-fit testing

Foucher Y. Giral M., Soulillou J.P. and Daurès J.P.

Statistical Methods in Medical Research. 2010 Apr ;19(2) :127-45.

8.1 Introduction

In longitudinal analyses, multistate models are becoming increasingly popular to deal

with the complex evolution of chronic diseases. The use of the Markov chain appears to

be very useful for this purpose [87, 83, 8]. Another approach consists of modeling the

probabilities of transitions according to the times spent in different states, the Markov

chain being only associated with the sequence of states [113]. These semi-Markov models

(SMM) are adapted to certain diseases, particularly to transplantation [24]. In this paper,

we use this approach to study the evolution of kidney transplant recipients (a cohort

followed up at Nantes University Hospital in France).

The first methodology issue concerns the use of a continuous marker in order to

define the states of disease severity of a patient during his/her follow-up. This marker

is available at certain visits, then the transitions between these transient states are

interval-censored. This means that the transition times and the sequence of states are

unknown during the elapsed time between two consecutive visits. This type of data is

often encountered in longitudinal studies. The time of entry into the study and the time

of the final event (for example the date of death) are exactly known ; contrary to the

intermediate times of transitions, which are interval censored because of the irregularity

of the observation process. In this paper, we thus chose to focus the modelling on multi-

state data where only intermediate and transient states are interval censored.

89
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Sternberg and Satten [142] proposed non-parametric estimators based on an EM

algorithm and showed that a SMM can still be applied to interval-censored data with

a unidirectional model without covariates. From a practical standpoint, parametric mo-

dels are appealing since the parameters can be estimated at a
√
n rate, leading to a

smaller sample size to achieve a given accuracy. Furthermore the parameters are often

interpretable and the covariates can easily be included. As noted by Lindsey [94], para-

metric regression models in the presence of heavily interval-censored data are robust. In

this paper, we define a SMM based on the generalized Weibull distribution. Convolution

products are used to adequately deal with interval-censored transitions, contrary to the

recent paper by Foucher et al. [45], in which the interval-censoring concerns only the du-

ration in a given state without considering the censoring of the sequence of consecutive

states. Kang and Lagakos [79] also insist on the necessity to take into account all the

information available in such a type of incomplete data, that is to say, both the times

of transitions and the nature of the states visited are unknown.

Another extension consists in the introduction of covariates through the probability

density functions of the times spent in each state and through the Markov chain associa-

ted with the sequence of states. The explanatory factors can then be associated either

with the speeds or with the trajectories of the process, contrary to most studies where

the covariates are only related to the durations [113, 24, 38, 70, 49].

The second issue in modeling multistate processes is the goodness-of-fit. Authors ge-

nerally grant little attention to this point. Most available tests concern Markov models

assuming that, for each subject, the number of visits is fixed and that no explanatory

variables are measured [78]. The main assumption of the proposed SMM is the statio-

narity related to the time since the inclusion of patients. Castelli et al. [19] recently

proposed a goodness-of-fit test of this stationary, but the authors did not deal with

the interval censoring. Based on the recent works on the Markov process by Aguirre

and Farewell [3], we herein define a Pearson-type goodness-of-fit statistic in order to

determine whether this stationary assumption of the SMM is valid in the presence of

interval censored data. However, their method only considers interval-censored times of

transition between transient states. Like the modified goodness-of-fit test proposed by

Titman and Sharples [147] for Markov or hidden Markov models, the statistic defined in

the present paper takes into account the exact times of transition into absorbing states

for the semi-Markov process.

We first present the data on which the model is based in Section 2. The modeling of

the resulting multistate data is considered in Section 3. The test of the stationarity is

presented in Section 4 and the methods and results are discussed in Section 5.
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8.2 Data and multi-state structure

Such developments were motivated by the analysis of a French prospective study

of kidney transplant recipients, extracted from the DIVAT (Données Informatisées et

VAlidées en Transplantation) data bank where biological and clinical data of transplant

patients have been recorded since 1990 at Nantes University Hospital. Data were com-

puterized at each checkup visit and at each anniversary of the transplantation. See the

paper by Giral et al. [53] for more details. Suppose that the sample consists of n subjects,

denoted by h (h = 1, 2, ..., n). The follow-up of each patient is a succession of visits at

times since the transplantation {vh,0, vh,1, ..., vh,nh}. The mean and the median of the

number of visits per patient are respectively 30 and 25.

In order to obtain a homogeneous sample, our data set concerns 839 patients ol-

der than 18 years and having received a kidney transplant between January 1996 and

September 2006. The follow-up started 3 months after the date of transplantation (all

patients had a visit at 3 months). The creatinine clearance (CL) is then regarded as

stabilized. CL, calculated using the modification of diet in renal disease formula [91], is

recorded at each visit and is used as a marker of the clinical aggravation towards the final

events. We consider that all patients enter into an initial state where the risk of failure

is low (state 1). For a subject, if her/his value of CL decreases by more than 30% of the

maximum observed value, we consider that she/he transits into a state where the risk

of failure is high (state 2). Absolute values of CL are not used to classify health-states,

since preliminary analyses have shown that it is more informative to consider relative

changes [41]. From state 2, no return into state 1 is considered, the medical assumption

is of a nonreversible aggravation. Of course, the hypothesis of no backward transition

between states 2 and 1 is a substantial assumption. If the state 2 is observed for a pa-

tient, the number of the following state will be greater than or equal to 2, whatever the

CL level. In other words, we suggest that the recovery of the kidney after such a shock

is not possible. However, the possible recovery should constitute a stronger assumption

from a clinical point of view.

Two final events are recorded with their exact date of occurrence : the return to

dialysis (state 3) and the death of the patient (state 4). In contrast to the transient

states of disease severity, state 3 and state 4 are absorbing. The 3 → 4 transition is

impossible since the follow-up of patients in the DIVAT data bank is stopped if the

patient returns to dialysis. According to this structure, which is presented in Figure 8.1,

the visit vh,nh relates to a final event or right-censoring with a functional transplant.

Table (8.1) offers some additional descriptions of the dataset. For instance, 190 patients

are right-censored in state 2 with a mean follow-up time since the transplantation of 4
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Table 8.1: Description of the sample according to the possible observed trajectories

Observed states Size Percentages meana mediana

1 537 64,0 % 3.79 3.48
1 ; 2 190 22,7 % 4.05 3.63
1 ; 2 ; 3 61 7,3 % 3.63 3.61
1 ; 2 ; 4 18 2,1 % 2.83 2.51
1 ; 3 16 1,9 % 1.75 1.39
1 ; 4 17 2,0 % 2.74 1.18
total 839 100,0 % 3.77 3.44

a mean/median follow-up times in years

Figure 8.1: Four-state model for the study of kidney transplant recipient evolution
according to a worsening/failure structure.

years.

Even though the description of this structure concerns the analysis of kidney trans-

plant recipients, this type of model can also be adapted to other longitudinal data

analyses. In many applications, the transient states of disease severity may be interval

censored and the date of final failures exactly known.

Nine explanatory variables have been retained, the reference group is specified in the

brackets : donor and recipient gender (women), cold ischemia time (less than 24 hours),

donor and recipient age at the time of transplantation (less than 55 years), number of

HLA-incompatibilities (less than 4), induction treatment (no Simulect), panel reactive

antibody (0 %) and delayed graft function (less than 6 days). These thresholds were

chosen by the clinicians according to the literature.
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8.3 The semi-Markov model

8.3.1 The semi-Markov framework

Let {Xh,r, r = 1, ..., nh} be the observed sequence of states at each visit for the hth

subject (h = 1, ..., n), where nh is the number of visits for this subject. By definition,

all patients begin in state 1, i.e. Xh,1 = 1. If the end of the follow-up corresponds to

return to dialysis, then Xh,nh = 3. If the final event consists in the death of the patient,

then Xh,nh = 4. Otherwise, {Xh,r, r = 1, ..., nh} ∈ {1, 2}. From {Xh,r, r = 0, ..., nh}, the

sequence of the distinct observed states can directly be deduced : {Wh,r, r = 0, ...,mh}
where mh is the number of observed transitions. By definition, Wh,0 = 1. This sequence

forms a Markov chain. Assuming the stationarity of the process with the time since the

transplantation, the probabilities of jumping from state Wh,r = i to state Wh,r+1 = j,

associated with this chain, can be written as :

Pij = P (Wh,r+1 = j|Wh,r = i) (8.1)

with the constraint ∑
j

Pij = 1. (8.2)

If state i is not persistent, then Pij ≥ 0 for i 6= j and Pij = 0 for i = j. Otherwise,

if state i is a final event, then Pij = 0 for i 6= j and Pij = 1 for i = j. The semi-

Markov property is assumed for the process, that is to say, time is reset to zero at each

transition. The probability density function (PDF) of the duration in state Wh,r = i,

before jumping to state Wh,r+1 = j (for i 6= j), is given by :

fij(dh,r) = lim
∆d→0+

P (dh,r < Dh,r < dh,r + ∆d|Wh,r+1 = j,Wh,r = i)/∆d (8.3)

in which Dh,r is the time spent in state Wh,r. As is usual in survival analysis, we deduce

from fij the corresponding survival, hazard and cumulative hazard functions, Sij , λij

and Λij respectively. One can notice that, for a particular multi-state structure in which

there is one initial state and a few absorbing states (without transient states), the

proposed SMM model generalizes the traditional competing risk model (CRM). Indeed,

for this type of CRM, the density function specific to the transition i→ j is based on the

following joined probability : lim∆d→0+ P (dh,r < Dh,r < dh,r + ∆d,Wh,r+1 = j|Wh,r =

i)/∆d. This quantity is equal to Pijfij(dh,r). Our separate modelling of the trajectories

(Pij) and of the times of transitions (fij) provides a high degree of flexibility and is very

convenient for result interpretations. For instance, Pij directly represents the prediction

of the proportion of transition i → j if all patients were followed-up until their final
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failure. Moreover, and as we will see later, it is possible to incorporate covariates either

through Pij or through fij .

We based our modeling strategy on the generalized Weibull distribution with

λij(dh,r) = θ−1
ij (1 + (dh,r/σij)

νij )1/θij−1(νij/σij)(dh,r/σij)
νij−1 (8.4)

for all dh,r ≥ 0, νij > 0, σij > 0 and θij > 0. This class of distribution has interes-

ting properties [14]. Depending on the parameter values, the hazard function can be

either constant, monotone (increasing or decreasing), ∪−shaped or ∩−shaped. For the

non-monotonic functions, it is interesting to calculate the times corresponding to the

minimum or the maximum hazard rate. If 0 < θij < νij < 1, then the hazard function

of the i→ j transition decreases from ∞ to its minimum value at the time

cij = σij

(θij − νijθij
νij − θij

)1/νij
(8.5)

and then increases to ∞, it is then ∪−shaped. If θij > νij > 1, then the hazard rate

increases from 0 to its maximum value at the time cij and then decreases to 0, it is then

∩−shaped. We can easily simplify this distribution using the likelihood ratio statistic

(LRS). For example, if θij is fixed at 1, the Weibull formulation is obtained. Moreover,

if νij equals 1, the hazard function is constant (exponential distribution).

8.3.2 Likelihood function

In order to compute the likelihood function, we need to identify the different obser-

ved trajectories according to Figure 8.1. Such trajectories are described in Figure 8.2.

Demonstrations of the following developments are included in the Appendix.

Trajectory (i) - The individual h is observed in both states of disease severity before

the occurrence of a final event k (k = 3, 4). The duration in the first state, dh,0, is included

in the interval ]d0
h,0, d

1
h,0]. The event k appears a time vh,nh after the transplantation.

Let Ch,1 represent this individual likelihood contribution.

Ch,1 = P12P2k

∫ d1h,0

d0h,0

f12(u)f2k(vh,nh − u)du (8.6)

Trajectory (ii) - The individual h is not observed in state 2 before the occurrence of

a final event k (k = 3, 4). Let Ch,2 be this contribution. Figure 8.1 shows that the patient

may directly jump from state 1 to state k, but he/she may have passed through state

2. This observation illustrates the interval censoring : the durations and the sequence of
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states.

Ch,2 = P1kf1k(vh,nh) + P12P2k

∫ vh,nh

d0h,0

f12(u)f2k(vh,nh − u)du (8.7)

Trajectory (iii) - The individual h is right-censored in state 1 at the time of her/his

last visit vh,nh . Let Ch,3 denote this type of observation.

Ch,3 =

4∑
j=2

P1jS1j(vh,nh) (8.8)

Trajectory (iv) - The individual h is right-censored in state 2 at the time of his/her

last visit vh,nh . The contribution of such trajectory is

Ch,4 = P12

∫ d1h,0

d0h,0

f12(u)
{ 4∑
j=3

P2jS2j(vh,nh − u)
}
du (8.9)

Making the product of these individual contributions, we obtain the likelihood func-

tion of the observed sample. We used the quasi-Newtonian algorithm to maximize this

function and to compute the Hessian matrix. This optimization was performed using

the R software with the optim function.

The integral calculations are numerically approximated using the 10-points Gauss-

Legendre quadrature. In order to evaluate the accuracy of the method, we also used a

20-points quadrature. One should notice that the previous integrals may include singu-

larities :

a. expressions (8.6) and (8.9) present a singularity at u = 0, where d0
h,0 = 0 and

ν12 < 1. Tacking s = ( u
σ12

)ν12 will remove this singularity.

b. expression (8.6) gives a singularity at u = vh,nh , where d1
h,0 = vh,nh and ν2k < 1.

c. expression (8.7) gives a singularity at u = vh,nh , where ν2k < 1 and d0
h,0 > 0.

Tacking s = (
vh,nh−u
σ2k

)ν2k will remove the singularities in cases b. and c.

d. expression (8.6) gives singularities at both u = 0 and u = vh,nh , where ν12 < 1,

ν2k < 1, d0
h,0 = 0 and d1

h,0 = vh,nh .

e. expression (8.7) gives singularities at both u = 0 and u = vh,nh , where ν12 < 1,

ν2k < 1 and d0
h,0 = 0. Cases d. and e. are more difficult to solve. One way of

removing the singularities is to split the integral into two parts, the first part from

0 to 0.5vh,nh and the second part from 0.5vh,nh to vh,nh . Each part has only one

singularity and previous substitutions can then be applied.

According to our database and the number of observations per subject, only 4 pa-

tients are concerned. These patients correspond to the trajectory (8.9) with d0
h,0 = 0. For

these contributions, we have made the appropriate substitution. If many of the observed
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X XI I I I
STATE 1 STATE 2 STATE 2 STATE k

d0
h,0

d1
h,0

time

trajectory (i)

X XI I I
STATE 1 STATE 1 STATE 1 STATE 1 STATE k

d0
h,0

v h,n

time

trajectory (ii)

X I I I
STATE 1 STATE 1 STATE 1 STATE 1

d0
h,0

time

trajectory (iii)
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STATE 1 STATE 1
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= v h,n h

v h,n h

Figure 8.2: Possible trajectories of a kidney transplant recipient. | | | Observed states
of disease severity during visits ; × × × Events for which the time of entrance since
the transplantation is exactly known.

trajectories was associated with singularities, the Gauss-Legendre quadrature would not

have been the best approach. The adaptive numerical integration (function integrate in

R) would be preferable.

8.3.3 Incorporation of explanatory factors

In SMM, most authors include covariates through the PDF of the times spent in

states, using the proportionality assumption. Many recent works in traditional survival

analysis have shown that the assumption of proportionality does not hold in many cases

and may lead to serious bias [107]. The same issue arises in multistate processes. We

consider that the covariates are fixed in time and that the corresponding regression

parameters depend on the durations. The hazard function of durations is defined by :

λij(dh,r, zh,ij) = λ0,ij(dh,r)exp(γij(dh,r)zh,ij) (8.10)
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in which λ0,ij is the baseline hazard function at the duration dh,r specific to the transition

from state i to state j. We assume that this function corresponds to a generalized

Weibull distribution. γij(dh,r)
T = (γ1

ij(dh,r), γ
2
ij(dh,r), ..., γ

mij
ij (dh,r)) is the vector of time-

dependent regression parameters, associated with the mij time fixed covariates zh,ij =

(z1
h,ij , z

2
h,ij , ..., z

mij
h,ij ) of the hth subject. Notice that the effect of the explanatory variables

can change from one transition to another. In order to fit time varying effects, we adopt

the method of Stablein, Carter and Nova [140] by introducing some time interaction

terms. Although the linear term would eventually be sufficient to allow for a time-

varying relationship, the quadratic term allows for the modeling of a surface that rises

and falls, constituting a non-monotonic time dependence. This method of modelling

time-dependent effects is particularly adapted to the following application since the

related hazard functions seem to be exponentially distributed. Moreover, the inclusion

in the exponential function of interactions with durations does not change the positivity

of the hazard function, regardless of the value of regression parameters. One can also

notice that the regression parameters are always interpretable as hazard ratios.

In order to compute the likelihood, we need the survival function associated with

(8.10). No analytical solution is available. Using again the 10-points Gauss-Legendre

quadrature, exp(−Λ0,ij(dh,r, zh,ij)) is numerically approximated. Log-Minus-Log survi-

val plots are used to determine if baseline hazard functions are proportional across

groups of categorical variables.

Parallel to this approach, we propose to include the explanatory factors through the

Markov chain (8.1). The idea is to take into account heterogeneity in the sequences of

the process. Using regression models for categorical dependent variables with more than

two response categories [98], the probabilities of jumping from the state Wh,r = i to the

state Wh,r+1 = j, can be written as :

Pij(ψh,ik, k 6= i) = exp(βijψh,ij)/
∑
k 6=i

exp(βikψh,ik) (8.11)

where βTij = (β0
ij , β

1
ij , ..., β

uij
ij ) is the vector of regression parameters associated with the

uij covariates ψh,ij = (1, ψ1
ij , ..., ψ

uij
ij ). The constraint (8.2) imposes a reference state.

From state 1, a patient may transit to states 2, 3 or 4. By convention, we fix β14 = 0.

Identically, β24 = 0.

8.3.4 Results

Explanatory factors and PDF parameters are first tested in univariate (p ≤ 0.20)

and the assumption of proportionality is graphically examined. Among the 90 possible

parameters for the complete model without interaction, 42 are retained. We have plotted
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Table 8.2: Regression parameters of the semi-Markov model

Transition Covariate Coef. SE p-value

Regression parameters associated with the trajectories, Pij().

1→ 2 Intercept 1.87 0.68 0.0064
1→ 2 Delayed graft function 0.73 0.34 0.0302
1→ 2 Donor age -2.03 0.69 0.0035
1→ 3 Intercept -2.81 0.53 0.0001
2→ 3 Intercept 1.13 0.34 0.0008
2→ 3 Incompatibilities A+B+DR 0.93 0.47 0.0473

Regression parameters associated with the durations, fij().

1→ 2 Induction treatment 0.36 0.14 0.0094
1→ 2 Recipient gender -0.26 0.13 0.0542
1→ 2 Donor age 0.96 0.23 0.0001
1→ 3 Cold ischemia time 5.02 1.20 0.0001
2→ 3 Incompatibilities A+B+DR 0.88 0.28 0.0019
2→ 3 Panel reactive antibody 1.09 0.35 0.0016
2→ 3 Panel reactive antibody × d a -0.48 0.22 0.0308
2→ 4 Delayed graft function 2.03 0.60 0.0008
2→ 4 Recipient gender 1.54 0.64 0.0165
2→ 4 Recipient gender × d a -4.30 1.19 0.0003
2→ 4 Recipient gender × d2 a 1.30 0.32 0.0001

a Time interaction with the duration d in the state

the logarithm of the estimated cumulative hazard function against the duration, for each

modality of each covariate and for all transitions. If the resulting curves are nonparallel,

then we model the effect of this covariate on this transition by adding interactions with

the duration. After the descending procedure (p ≤ 0.05), 11 factors are finally retained

with a log likelihood equals -1550.71, regardless of the number of points in the Gauss-

Legendre quadrature. The estimations of regression parameters are given in Table 8.2.

Notice that in the case of convergence problems associated with the 42-parameters mo-

del, it would have been more adequate to adopt an ascending method to construct the

multivariate model. In our database, the 1 → 2 transitions are interval censored into

a short time period with a median equal to 2.5 months. Moreover, the proportion of

observations for which the trajectory of the subject is unknown (contributions 8.7) is

relatively small, representing only 3.9% of the total number of contributions. Problems

of fitting may have been greater if less observations were made per patient, i.e. higher

interval censored periods and a higher proportion of unknown trajectories.

Concerning the trajectories, the 1 → 2 transition is more likely in patients with



8.3. The semi-Markov model 99

Table 8.3: PDF parameters related to the durations in states

σij νij θij
Transition Estim. SE Estim. SE Estim. SE

1→ 2 68.80 76.53 0.77 0.05 0.25 0.20
1→ 3 42.84 47.34 1 . 1 .
1→ 4 109.83 73.00 1 . 1 .
2→ 3 12.66 3.20 1 . 1 .
2→ 4 6.54 4.13 1 . 1 .

a delayed graft function greater than or equal to 6 days compared to the others. In

contrast, receiving a kidney from a donor greater than 55 years of age is a risk factor for

death, given that the initial state is occupied. Finally, kidney transplant recipients with

more than 4 HLA-incompatibilities (A+B+DR) constitute a risk factor for returning to

dialysis, given that the second state is occupied.

The effects of covariates on the durations in the different states can also be examined.

Given that state 2 follows, the time spent in the initial state is shorter for men treated

by Simulect or receiving a transplant from a donor greater than 55 years of age. Given

that the subject returned to dialysis from the initial state, this transition seems to be

accelerated when the cold ischemia time is greater than 24 hours. For subjects in the

worsened state who returned to dialysis, the transition is faster for transplantations with

high HLA-incompatibilities. Again for this transition, individuals with panel reactive

antibody (greater than 0 %) seem to transit quicker than the others. However, this

effect decreases linearly according to time spent in the worsened state. Finally, regarding

patient death, the duration in state 2 appears to be shorter for men with a long delayed

graft function. The regression coefficient associated with gender varies across the time

spent in the worsened state.

Concerning the PDF parameters, presented in Table 8.3, the duration hazard func-

tion of the 1→ 2 transition is ∪−shaped with a minimum about 4 years post transplan-

tation. Using the LRS, the other transitions seem to be exponentially distributed, i.e. the

baseline hazard functions are constant over the durations. If the 1 → 2 transition had

been exponentially distributed, the modeling of a Markov versus a semi-Markov process

would have been more suitable. However, the semi-Markov property we describe here is

interesting for several reasons. Firstly, even if the 2→ 3 and 2→ 4 transitions times are

exponentially distributed, the resulting distribution of duration in state 2 is a mixture of

exponential distributions. Secondly, again concerning this duration in state 2, we have

identified significant interactions between panel reactive antibody, recipient gender and

durations. Thus, the specific hazard functions of the 2→ 3 and 2→ 4 are not constant

according to durations for patients with positive panel reactive antibody and for men,
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respectively. Finally, in order to compute the probability of entering into an absorbing

state according to chronological time since the transplantation, convolution products

similar to expressions (8.6) and (8.7) use the density f12, which is not constant over

time regardless of the covariate values. Thus, the results obtained are globally different

from those obtained using a Markov model.

The values of all the parameters are presented in Table 8.4 for the integral calculation

made using 20-points Gauss Legendre quadrature. One can see that the supplementary

number of points is not associated with a significant difference in terms of parameter

estimation, compared to the 10-points approximation.

8.4 The goodness-of-fit test

8.4.1 Definition of the statistic

In SMM, the estimated transition probabilities depend on the sequence of observed

states, on the time spent in states and on the covariate pattern. In section 3, the LRS

is used to test the significance of parameters associated with duration distribution and

of regression coefficients. Explanatory variables are also graphically examined. One of

the assumptions of the modeling is the stationarity (8.1) regarding the chronological

time, i.e. the time since the transplantation. The null hypothesis (H0) assumes that the

semi-Markov is stationary. The alternative hypothesis (H1) assumes that the model is

not stationary. To test if the stationarity is valid, the behavior of the model across chro-

nological time should be examined. We propose a Pearson-type goodness-of-fit statistic,

in which observations are grouped according to K categories of transitions and to L

intervals of chronological times with boundaries {t0, ..., tl..., tL}.

In contrast to the 1 → 2 transitions, the times of occurrence of the final events k

(k = 3, 4) are exactly known. This property of the data makes the classification of these

transitions according to chronological time easier. In other words, classification of the

1→ 2 transitions according to chronological time is not possible, since all the durations

of these transitions are interval-censored. We thus consider two types of observations

(K = 2) : the jump to state 3 (e → 3, with e = 1, 2) and the jump to state 4 (e → 4,

with e = 1, 2).

Concerning the classification of transitions according to chronological time, we define

L = 5 intervals limited using the quantiles of the times of occurrence of a final event.

These choices lead to balanced number of observed transitions.

Let el,k and ol,k be respectively the expected and observed number of transitions in
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cell (l, k). The Pearson type goodness-of-fit statistic, to examine the adequacy of the

stationary SMM, is

G =
L∑
l=1

4∑
k=3

(ol,k − el,k)2/el,k (8.12)

This goodness-of-fit test bears some resemblances to the test for lifetables proposed by

Lawless [89], which have been applied to testing the fit of the survival curve for a mul-

tistate model with a single absorbing state [114]. In these works, the statistic is based

on the number of entries into the absorbing state in time periods conditional on an

individual being in a transient state at the start of that period, meaning an individual

contributes a series of binary observations (whether they survived or were absorbed

in each period). In contrast the statistic in this paper categorises observations accor-

ding to which absorbing state they entered and the time period, meaning an individual

contributes a single multinomial observation.

Respecting the expression (8.7) and taking into account the right-censoring, the

expected number of transitions into the state k (k = 3, 4) between tl−1 and tl (l =

1, ..., L) equals

el,k =
∑

R(tl−1)

{
P1k(ψh,12, ψh,13)

∫ min(vh,nh ,tl)

tl−1

f1k(x, zh,1k)dx

+ P12(ψh,12, ψh,13)P2k(ψh,23)

∫ min(vh,nh ,tl)

tl−1

∫ x

0
f12(u, zh,12)

× f2k(x− u, zh,2k)dudx
}

(8.13)

where vh,nh is the possible time of right-censoring of the subject h and R(tl−1) represents

the sum over all the individuals h which are not censored at the time tl−1 since the

transplantation. The number of final events is obtained by counting their occurrence in

an interval :

ol,k =
∑

R(tl−1)

I{vh,nh≤tl and Wh,nh
=k}

where I{a} = 1 if the condition a is respected and 0 otherwise.

8.4.2 Distribution of the statistic

As written in section 4.1., the 1 → 2 transitions are not included in the statistic

(8.12), since only the times of entering in absorbing states are exactly known. Thus, the

proposed statistic does not include the right-censored contributions. For this reason, and

regardless of the asymptotic circumstances, the approximation using a χ2 distribution

is not adequate. One method for estimating the distribution of the statistic (8.12) is
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to generate B independent bootstrap samples from the parameters of the SMM under

H0 and to calculate the goodness-of-fit statistic for each sample. This semi-parametric

bootstrap procedure can be divided into the following steps :

(i) - Generation of B bootstrap samples, constituted of n subjects. Each indivi-

dual h∗ (h∗ = 1, ..., n) is observed during visits at the times since the transplanta-

tion {v∗h∗,0, v∗h∗,1, ..., v∗h∗,nh∗}. This vector corresponds to the observed times of visit in

the initial sample. Since we do not simulate these times, the bootstrap is named semi-

parametric. All patients begin in the state 1, W ∗h∗,0 = 1.

(ii) - Simulation of the trajectory of each patient h∗ from the estimated parameters

of the SMM under H0. From the estimated regression coefficients associated with the

Markov chain, {β̂1j , j = 2, 3}, the second bootstrap state, W ∗h∗,1, is defined using the

multinomial distribution with parameters {P1j(ψh∗,12, ψh∗,13), j = 2, 3, 4}. If W ∗h∗,1 = 2,

then the value of W ∗h∗,2 is obtained using a binomial distribution with probabilities

{P2j(ψh∗,23), j = 3, 4}. Given these bootstrap sequence of states, the duration in state

1 for the subject h, D∗h∗,0, follows the PDF f1W ∗
h∗,1

, which takes into account the cova-

riates zh,1W ∗
h∗,1

. Thus, the inverse of the corresponding distribution function can be used

to obtain a simulated duration from a random uniform variable U(0, 1). Identically, if

W ∗h∗,1 = 2, then the duration in this can be simulated from f2W ∗
h∗,2

.

(iii) - Estimation of the SMM for each bootstrap sample. The contributions are ob-

tained as follows.

– If d∗h∗,0 > v∗h∗,nh∗ , then this subject h∗ is censored in state1 and her/his contribution

is equivalent to (8.8), replacing vh,nh by v∗h∗,nh∗ .

– Otherwise if v∗h∗,r−1 < d∗h∗,0 ≤ v∗h∗,r (r = 1, ..., nh∗) and W ∗h∗,1 = k (k = 3, 4),

the contribution corresponds to (8.7), where vh,nh becomes d∗h∗,0 and d0
h,0 becomes

v∗h∗,r−1.

– Otherwise if v∗h∗,r−1 < d∗h∗,0 ≤ v∗h∗,r (r = 1, ..., nh∗), W ∗h∗,1 = 2 and d∗h∗,0 + d∗h∗,1 >

v∗h∗,nh∗ , then the contribution equals (8.9), in which the values {d0
h,0, d

1
h,0, vh,nh}

become {v∗h∗,r−1, v
∗
h∗,r, v

∗
h∗,nh∗

}.
– Otherwise if v∗h∗,r−1 < d∗h∗,0 ≤ v∗h∗,r (r = 1, ..., nh∗), W ∗h∗,1 = 2 and d∗h∗,0 +

d∗h∗,1 ≤ v∗h∗,nh∗ , then the contribution is equivalent to (8.6), in which the values

{d0
h,0, d

1
h,0, vh,nh} become {v∗h∗,r−1, v

∗
h∗,r, d

∗
h∗,0 + d∗h∗,1}.

(iv) - Calculation of the distribution of the bootstrap statistics. For each bootstrap

sample, the statistics G∗b (b = 1, ..., B) is calculated, using the expressions (8.12) and

(8.13). The p-value, i.e. the error probability of rejecting H0 if this hypothesis is valid,

equals B−1
∑B

b=1 I{G∗
b≥G}, where I{G∗

b≥G} equals 1 if the bootstrap statisticsG∗b is greater
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than or equal to G, and 0 otherwise.

8.4.3 Application to data

The expected and observed counts of transitions into a final state are shown in

the Contingency Table 8.5. The first two rows correspond to the observed and expec-

ted returns to dialysis and death between 0.011 and 0.689 years post transplantation.

For these two types of events, the respective cells contribute 5.19% and 10.12% of the

value of the goodness-of-fit statistic, with G = 14.12. The two cells in bold contri-

bute 46.52% and correspond to the returns to dialysis. For reasons of computing time,

400 bootstrap samples were carried out. The quantiles of the cumulative probability

function of the bootstrap statistic in {0.75, 0.50, 0.25, 0.10, 0.05, 0.01} are respectively

{9.79, 12.77, 15.26, 18.27, 20.95, 27.37}. 159 bootstrap statistics are greater than or equal

to G, corresponding to a p-value equal to 0.3975. Thus, the fitted stationary SMM seems

to be adequate to the kidney transplant data.

8.5 Conclusions

We have considered a flexible multistate model in order to analyze inherently complex

longitudinal data. This model has been applied to the follow-up of kidney transplant

recipients. The generalized Weibull PDF appears to be suitable. The use of a multinomial

and multivariate logistic approach, in order to introduce explanatory factors in the

Markov chain, also lead to a more precise modeling.

This parametric regression allows for the analysis of interval-censored data. More

precisely, as is often the case in longitudinal data, the date of the final and absorbing

events are exactly known (the death or the return to dialysis in our application) and

only the transition times of the intermediate and transient states are interval censo-

red. Between two consecutive visits, the information regarding a patient is unavailable.

Using convolution products, the proposed estimation procedure deals with all the pos-

sible trajectories of a patient during this interval and can be easily adapted to other

applications.

This model is fitted using standard likelihood estimation. The LRS can then be

applied to the parameters selection strategy. This relates to the parsimony of the distri-

bution functions and the selection of the significant covariates.

In order to determine whether the stationary assumption of the SMM is valid, we

proposed the Pearson-type goodness-of-fit test. Because the theoretical distribution of



104 Chapitre 8. A flexible semi-Markov model

Table 8.4: Comparison of the parameter estimations according to the number of points
in the Gauss-Legendre quadrature

Transition Parameters Estim.
(10 points)

Estim.
(20 points)

Parameters of the baseline hazard functions

1→ 2 σ12 68.80 68.75
1→ 2 ν12 0.77 0.05
1→ 2 θ12 0.25 0.25
1→ 3 σ13 42.84 42.76
1→ 4 σ14 109.83 109.87
2→ 3 σ23 12.66 12.66
2→ 4 σ24 6.54 6.83

Regression parameters associated with the trajectories, Pij().

1→ 2 Intercept 1.87 1.87
1→ 2 Delayed graft function 0.73 0.73
1→ 2 Donor age -2.03 -2.03
1→ 3 Intercept -2.81 -2.81
2→ 3 Intercept 1.13 1.13
2→ 3 Incompatibilities A+B+DR 0.93 0.93

Regression parameters associated with the durations, fij().

1→ 2 Induction treatment 0.36 0.36
1→ 2 Recipient gender -0.26 -0.26
1→ 2 Donor age 0.96 0.96
1→ 3 Cold ischemia time 5.02 5.02
2→ 3 Incompatibilities A+B+DR 0.88 0.88
2→ 3 Panel reactive antibody 1.09 1.09
2→ 3 Panel reactive antibody × d a -0.48 -0.47
2→ 4 Delayed graft function 2.03 2.06
2→ 4 Recipient gender 1.54 1.56
2→ 4 Recipient gender × d a -4.30 -4.30
2→ 4 Recipient gender × d2 a 1.30 1.30

a Time interaction with the duration d in the state
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this statistic is intractable, a bootstrap algorithm was proposed. This test does not

provide evidence of lack of fit. To sum up, this paper offers three extensions relating

to the existing works in SMM : the approach for addressing covariates, the modeling of

interval-censoring and the testing of stationarity.

A way to improve this statistic should take into account the 1→ 2 transition directly

in the contingency table. In our application, all the transitions form state 1 into state

2 are interval-censored with different intervals for each subject. Thus, the classification

of the number of 1 → 2 transitions in some intervals of time since the transplantation

is difficult. However, even if the statistic is based on the number of final failures, the

1→ 2 transition enters into the computation of the expected number of final events (see

equation 8.13).

As we mentioned previously, the date of entry into an absorbing state, vh,nh , is

exactly known. However, the estimation of the model can be adapted if this date is

interval censored. For example, we can reconsider the individual likelihood contribution

of a subject h respecting the trajectory (i), but where the date of entry into the state

Wh,2 = k occurs between v0
h,nh

and v1
h,nh

. In this case, the equation (8.6) can be extend

as follows :

P12P2k

∫ d1h,0

d0h,0

∫ v1h,nh

v0h,nh

f12(u)f2k(w − u)dwdu

One can see that this expression is equal to (8.6) when the difference between v0
h,nh

and v1
h,nh

tends to be null. The double integral calculations are always feasible using

the Gauss-Legendre quadrature. For a higher dimension of integrals, for instance if

three consecutive transitions were interval censored for a given subject (2 transient

and 1 absorbing states), this numerical approximation is no longer feasible since the

computation time increases too much and since removing singularities becomes harder.

The main limit is the assumption of a unidirectional model. Indeed, if returns are

included (i.e. the transition from State 2 to State 1). The recent paper of Kang and

Lagakos [79] considers the case where backward transitions are permitted. This excellent

work constitutes a way of extending our proposed SMM, since the authors do not include

covariate effects in their modelling.
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Table 8.5: Contingency table for the observed and expected counts of final events.

Chronological time Transition Percentage
(in years) e→ 3 e→ 4 e→ 3 e→ 4

]0.011; 0.689] Observed 12 8 5.19% 10.12%
Expected 9.38 5.25

]0.689; 2.168] Observed 13 8 21.21% 2.89%
Expected 20.91 10.02

]2.168; 3.826] Observed 16 5 15.73% 11.73%
Expected 23.17 8.81

]3.826; 5.213] Observed 17 4 2.14% 4.45%
Expected 14.87 6.18

]5.213; 9.158] Observed 14 7 25.31% 0.24%
Expected 23.08 7.51

Appendix of the paper by Foucher et al. (SMMR, 2010)

Trajectory (i) - The contribution is the joint probability that the subject h jumped

into state 2 after a duration in state 1 between d0
h,0 and d1

h,0 and that she/he returned

to dialysis (k = 3) or died (k = 4) at time vh,nh post transplantation.

Ch,1 = lim
∆d→0+

{
P (vh,nh − dh,0 < dh,1 < vh,nh − dh,0 + ∆d,Wh,2 = k,

d0
h,0 < dh,0 < d1

h,0,Wh,1 = 2|Wh,0 = 1)/∆d
}

= lim
∆d→0+

{
P (vh,nh − dh,0 < dh,1 < vh,nh − dh,0 + ∆d,Wh,2 = k|

d0
h,0 < dh,0 < d1

h,0,Wh,1 = 2,Wh,0 = 1)

× P (d0
h,0 < dh,0 < d1

h,0,Wh,1 = 2|Wh,0 = 1)/∆d
}

= lim
∆d→0+

{
P (Wh,2 = k|Wh,1 = 2)P (vh,nh − dh,0 < dh,1 < vh,nh − dh,0

+ ∆d|Wh,2 = k,Wh,1 = 2)/∆d
}

× P (Wh,1 = 2|Wh,0 = 1)P (d0
0,h < dh,0 < d1

h,0|Wh,1 = 2,Wh,0 = 1)

= P12P2k

∫ d1h,0

d0h,0

f12(u)f2k(vh,nh − u)du

Trajectory (ii) - Because the state 2 is not observed, we must take into account that

the individual transited directly between state 1 and state k at time vh,nh after the

transplantation or that her/he had two consecutive transitions 1→ 2→ k in the interval



8.5. Conclusions 107

]d0
h,0, vh,nh ]. Respecting the last development, we obtain :

Ch,2 = lim
∆d→0+

{
P (vh,nh < dh,0 < vh,nh + ∆d,Wh,1 = k|Wh,0 = 1)/∆d

}
+ lim

∆d→0+

{
P (vh,nh − dh,0 < dh,1 < vh,nh − dh,0 + ∆d,Wh,2 = k,

d0
h,0 < dh,0 < vh,nh ,Wh,1 = 2|Wh,0 = 1)/∆d

}
= P1kf1k(vh,nh) + P12P2k

∫ vh,nh

d0h,0

f12(u)f2k(vh,nh − u)du

Trajectory (iii) - The individual h is right-censored in state 1 after a time vh,nh post

transplantation.

Ch,3 = P (dh,0 > vh,nh |Wh,0 = 1)

=
4∑
j=2

P (Wh,1 = j|Wh,0 = 1)P (dh,0 > vh,nh |Wh,1 = j,Wh,0 = 1)

=

4∑
j=2

P1jS1j(vh,nh)

Trajectory (iv) - The individual h is right-censored in state 2 after a time vh,nh post

transplantation and her/he jumped into state 2 after a duration in state 1 between d0
h,0

and d1
h,0.

Ch,4 = P (dh,1 > vh,nh − dh,0,Wh,1 = 2, d0
h,0 < dh,0 < d1

h,0|Wh,0 = 1)

= P (dh,1 > vh,nh − dh,0|Wh,1 = 2, d0
h,0 < dh,0 < d1

h,0,Wh,0 = 1)

× P (d0
h,0 < dh,0 < d1

h,0,Wh,1 = 2|Wh,0 = 1)

= P (Wh,1 = 2|Wh,0 = 1)P (d0
h,0 < dh,0 < d1

h,0|Wh,1 = 2,Wh,0 = 1)

×
4∑
j=3

P (Wh,2 = j|Wh,1 = 2)P (dh,1 > vh,nh − dh,0|Wh,2 = j,Wh,1 = 2)

= P12

∫ d1h,0

d0h,0

f12(u)
{ 4∑
j=3

P2jS2j(vh,nh − u)
}
du
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- Chapitre 9 -

The prognostic in renal transplantation : an overview of

the projects

Determining early surrogate markers of long-term graft outcome is important for

optimal medical management. Non-invasive (blood or urine) biomarkers have been pro-

posed for the prediction of post-transplant clinical event. However, these biomarkers still

need further validations in large patient cohorts and the evaluation of their prognostic

capacity is often based on a simple correlation between the marker and the time-to-event

[42].

Currently, the 6- and 12-month post-transplant serum creatinine level is considered

to be the simplest marker that is significantly correlated with graft survival. Again, this

correlation have to be interpreted with caution : although 6–12-month serum creatinine

level correlates with graft loss, this marker has been shown to be poorly predictive.

According to this need of useful prognostic indicators, three risk scores of graft failure

have been published from different groups in the last 2 years [82, 101, 43], including our

KTFS. However, all these articles involve several avenues for improvements, particularly

regarding the methodology. We obtained two grants to support these developments : from

the French National Agency of Research (ANR-11-JSV1-0008-01) and from the French

Ministry of Health (PHRC, PROG/11/85, 2011).

According to these grants, with the additional support from the CENTAURE foun-

dation, we thus have organized a working group around this general objective in renal

transplantation. Magali Giral (Professor in Nephrology) is in charge of the clinical di-

mension of the group. She also coordinates the DIVAT network. She is the thesis director

of all the PhD students. Etienne Dantan (Assistant Professor in Biostatistics) was re-

cruited two years ago in the SPHERE laboratory. Philippe Tessier (Assistant Professor

in Health Economy) is specialized in medical decision making. Marine Lorent, Katy

111
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Trébern-Launay and Florence Gillaizeau are PhD students in this group.

The following paragraphs present the main projects as a summary. Some of them

are detailed in the next chapters.

9.1 The DGFS : a very simple score to predict delayed

graft function

Within the past decade, even though the frequency of acute rejection episodes drama-

tically decreased under modern immunosuppressive regimen, the incidence and severity

of delayed graft function (DGF) remained stable. The DGF is defined as the need for

dialysis within the first seven days after the renal transplantation. DGF is known to im-

pair 1-year post transplantation renal function and to decrease long-term graft survival.

Consequences of DGF are also economic with more prolonged hospitalization, increase

cost of patient management, need for dialysis, diagnostic radiology, biopsies and closer

immunosuppressive drug monitoring [158, 20].

Therefore, predicting patient DGF appears important in kidney transplantation ma-

nagement in order to propose at least new preventive drugs in patients with high risk of

DGF or optimally to decrease the overall DGF prevalence by a better graft allocation.

Several DGF scoring system have actually been proposed within the last few years, es-

pecially by Irish et al. [71]. In this study, the authors refined their first model by using

additional donor and recipient characteristics known at the time of transplantation. By

using the United State Renal Data System (USRDS) registry, authors proposed a score

calculated at the time of transplantation. The predictive capacity of the model was va-

lidated by using an independent data set associated with an area under the ROC curve

at 0.70 (no confidence interval available). As usual, regardless the high quality of the

methodology, this score is associated with several limitations :

– It was developed from north-American recipients, while the immunosuppressive

therapy (dosage, induction, etc.), the definition of adverse events and the patients’

profiles differ substantially with European patients. It can be therefore inadequate

to use this score in Europe.

– Patients were included between 2003 and 2006, which may not be representative

of recent transplantations.

– It is based on high number of variables (eighteen), without decision threshold

aiming to classify patients according to their risk of DGF.

For all of these reasons, we thus proposed to develop a complementary DGF risk

score, called DGFS, from the recipients transplanted between 2007 and 2012 in the DI-

VAT network, receiving Tacrolimus and Mycophenolate mofetil as maintenance therapy.
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Adult kidney transplant recipients in the DIVAT data bank were included in the study.

Patients who received a kidney from non heart-beating donors, pre-emptive transplanta-

tion, use of pulsatile perfusion machine for graft’s preservation, under peritoneal dialysis

or who displayed less than 7 days of patient-and-graft survival were excluded from the

study. Patients with at least one missing values on the following variables considered

as major risk factors of DGF in literature : cold ischemia time, recipient’s gender, HLA

incompatibilities and PRA. Patients with missing value on DGF were also removed from

the analysis. 1 844 adult renal transplant recipients were included in the study, among

whom 468 (25.4%) had a DGF.

These patients were randomly assigned into two samples in a proportion of two-

thirds for learning (N=1238) and one-third for validation (N=606). The construction of

the scoring system was done based on the learning sample. A logistic regression model

was performed to study the probability of DGF. Univariate analyses were performed

for a first selection of explicative variables (p-value < 0.20). The covariates were further

analysed in a multivariate model and retained if their p-value was lower than 0.05 in

a backward selection. Finally, the last significant variables were removed if the corres-

ponding decrease of the area under ROC curve was lower than 1%. The scoring system

was the linear predictor of this final model. For a better interpretation, we normalized

this score by subtracting the mean and dividing by the standard deviation in order to

obtain the DGFS.

The previous model was validated with the independent data set and the corres-

ponding ROC curve was estimated for validation. 95% confidence intervals were non-

parametrically obtained by bootstrap resampling (1000 iterations). The calibration of

the model was also evaluated, i.e. the concordance between the observed probabilities

of DGF and the expected ones. As usual, 10 intervals of the DGFS were used for the

corresponding plot and Hosmer-Lemeshow statistic.

For this project, we also have performed an alternative strategy by adapting the

bootstrap 0.632+ algorithm for the estimation of the area under the ROC curve with

complete data (no censoring or truncation, see chapter 4 for more details about this

approach). We used a logistic regression with lasso penalization. Regarding the sample

size and the number of explicative variables, no over-fitting was expected. We validated

this expectation : the traditional approach (division of the sample) offered similar results

than the bootstrap 0.632+. We thus chose the traditional approach in order to present a

more simple methodology for a clinical publication of the results. All the analyses were

performed by using R software version 2.15 [124]. In order to compute the DGFS and

to interpret the resulting value, we proposed an application available on smartphones,

tablets or computers at www.divat.fr/en/online-calculators/dgfs.



114 Chapitre 9. The prognostic in renal transplantation

Only five covariates were finally retained in the scoring system associated with the

risk of DGF. The area under the ROC curve was 0.73, closed to the value at 0.70 found

by Irish et al. These five variables are easily available at the time of transplantation.

The corresponding article of this work is in process and we study the possibility of a

patent with the support of Nantes University Hospital. The first part of the statistical

work was performed by Florent LeBorgne (Master 2 in Biostatistics) and the writing of

the paper is under the responsibility of Marion Chapal (resident).

9.2 A multistate model to investigate the relationship

between biomarkers and kidney transplant reci-

pients’ outcomes (PhD student : F. Gillaizeau).

The angiotensin II type 1 receptor (AT1R) is an emerging target of functional non-

HLA antibodies. We examined the potential of pre-sensitization against AT1R as a risk

factor for long-term graft survival and acute rejection episodes (ARE).

The study included 599 kidney transplanted patients between 1998 and 2007. Se-

rum samples were analysed in a blinded fashion for anti-AT1R antibodies (AT1R-Abs)

using a quantitative solid-phase assay. A threshold of AT1R-Abs levels was statistically

determined at 10 units based on the time to graft failure (death censored) by using

the methodology proposed by Hothorn and Zeileis [69]. Two extended Cox models with

time-dependent regression coefficients were used to determine the risk factors for time

to graft failure (death censored) and time to first ARE. AT1R-Abs > 10 units were

detected in 283 patients (47.2%) before transplantation. Patients who had a level of

AT1R-Abs > 10 units had a 2.6 higher risk of graft failure from 3 years post transplan-

tation onwards (p=0.0003) and a 1.9 fold higher risk of experiencing ARE within the

first 4 months of transplantation (p=0.0373). Thus, these traditional analyses illustra-

ted that pre-transplant AT1R-Abs constitutes an independent risk factor for long-term

graft loss in association with a higher risk of early ARE. The corresponding paper is in

revision in the American Journal of Transplantation.

Nevertheless, a question persists : is the higher risk of graft failure for patients with

AT1R-Abs > 10 units due to the higher frequency of ARE ? We developed a multistate

model to assess the relationship between AT1R-Abs and the transplantation outcome.

Outcomes were the transition probabilities between 4 states : graft without any acute

ARE, graft with at least one ARE, return to dialysis and patient death (figure 9.1).

We used a parametric Semi-Markov model with generalized Weibull distribution of the

waiting times [49]. This model has few advantages : ARE represents an outcome but
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STATE 1 
Functional graft 

without ARE 

STATE 2 
Functional graft with 

ARE 

STATE 3 
Return in dialysis 

STATE 4 
Death with 

functional graft  

Transient state Absorbing state Transition 

Figure 9.1: Multistate model to investigate the relationship between AT1R and kidney
transplant recipients outcomes

also a risk factor of return in dialysis, which is in competition with death (avoiding the

assumption of non-informative censoring). Here are the preliminary results :

1. It confirms that patients with AT1R-Abs > 10 units had a significant increase risk

of ARE.

2. Among patients with ARE, it seems that these acute events are delayed for patients

with AT1R-Abs > 10 units. It can suggest that immunization related to AT1R-Abs

is associated with non-usual delayed ARE (the majority of ARE occurs usually

in the first post transplantation year). Nevertheless, after investigations, these

delayed rejection seem to be related to non-compliance.

3. Among patients with ARE, patients with AT1R-Abs > 10 units seem to be more

susceptible for returning in dialysis compared with patients with AT1R-Abs ≤ 10

unit.

4. After 3 years post transplantation and among patients returning in dialysis, AT1R-

Abs > 10 units at transplantation seems associated with earlier failures. It may

suggest a higher propensity of subclinical ARE for patients with AT1R-Abs > 10

units or chronic rejection process.

All these results confirm that pre-graft AT1R-Abs is a risk factor of return in dialysis.

A part of this association is explained by the correlation between pre-graft AT1R-Abs

and the higher frequency of ARE. Nevertheless, this multistate model also demonstrated

an independent role of the pre-graft AT1R-Abs level which may be associated with an

embedded immunization.
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This work will constitute the basis to communicate the interest of such multistate

models in biomarkers’ studies. The results are more informative compared to traditio-

nal approaches. In clinical epidemiology, such modelling is now accepted, but efforts

are still needed in translational research. We just begin a collaborative study with the

Pr. Siamak Bahram, the project leader of Transplantex. Transplantex has been selec-

ted as a ’Laboratory of Excellence’ within the framework of the French government’s

’Investissements d’Avenir’. The objective is to identify novel histocompatibility targets

and transplantation biomarkers. DIVAT and the associated biocollection constitute the

materials of this project. We think that the developments performed in the AT1R study

will also be relevant to this new project. Florence Gillaizeau, PhD student, is in charge

of these projects involving multistate models.

9.3 The concept of net survival

The current changes in the demographic profile of patients with End Stage Renal Di-

sease (ESRD) awaiting a transplantation, such as increasing age and presence of serious

comorbidities, would be expected to increase mortality. Instead, the post-transplant

mortality rate is still stable. One major hypothesis to explain this decrease in overall

mortality rate (including all causes of death) is a specific reduction in mortality rela-

ted to the transplantation status. This recipient-related mortality may be due to the

addition of transplant-inherent conditions to pre-existing classical risk factors in ESRD

patients. Understanding the factors associated with recipient-related mortality would

benefit the medical management of ESRD.

However, most studies in kidney transplantation are based on overall mortality, which

obviously limits their interpretation. For example, recipient age is presented as the grea-

test risk factor for mortality, but this could mainly be due to ageing, which is also

observed in the general population. The analysis of this related mortality is challenging

due to the difficulty in establishing the exact cause of death in transplant recipients.

For example, it is impossible to ascertain whether or not a suicide or a cancer is rela-

ted to the disease and treatments. Nevertheless, the relative survival method estimates

the specific mortality excess for a disease in comparison with the non-specific mortality

from a matched general population. This methodology has been widely applied to cancer

registries and has improved the understanding of cancer-related mortality.

Two cohorts were included for this study : the DIVAT database with 3641 patients

and the UNOS database with 8291 patients (USA, www.unos.org). The excess mor-

tality related to kidney transplant recipients was assessed by subtracting the expected

mortality of the general population from the overall mortality observed in both cohorts.
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Expected mortality for both cohorts were determined from the lifetime tables of each

country proposed by the human mortality database (HMD, www.mortality.org). For

each recipient, this subtraction was performed according to gender, age and year of

transplantation. Risk factors were evaluated by the corresponding hazard ratios using

the additive model as proposed by Estève [39]. The covariate selection procedure was

similar to the overall mortality analysis. The proportionality of hazards was also eva-

luated [141]. The relative survival model was estimated using the relsurv R-package

using the expectation-maximization algorithm for parameters estimation.

As expected, the demographic parameters were different between both cohorts. In the

U.S. cohort, the recipients were younger, heavier and more diabetic at transplantation.

The U.S. patients also received better matched kidneys, from younger donors and with a

shorter cold ischemia time. The overall 10-year cumulative mortality was also different,

13% for the DIVAT cohort and 27% for the UNOS cohort.

By removing the expected mortality, we demonstrated that recipient age, which was

reported as being a key for predicting overall mortality, was no longer a significant

risk factor for excess mortality in the DIVAT-based analysis. Recipient age remained a

significant risk factor in the UNOS-based analysis (United Network for Organ Sharing),

but the corresponding hazard ratios were lower for the analysis of the mortality related

to transplantation status compared to the analysis of overall mortality. This difference

may be due to the smaller sample size of the DIVAT cohort (less statistical power) or

the differences in comorbidities between both cohorts with more diabetic and overweight

recipients in the U.S. cohort that are not taken into account in the expected mortality

analysis. Therefore, we cannot exclude the fact that the mortality observed in older

recipients is higher than that observed in the general population.

The other factor taken into account in the lifetime tables was recipient gender. In

terms of overall mortality, gender was not significantly correlated in the UNOS cohort

(p=0.2318), whereas it was an independent risk factor in the DIVAT cohort (p=0.0005).

Nevertheless, gender was not found to be a significant risk factor for recipient-related

mortality in either cohort. This difference was due to the higher mortality rates of

men compared to women in France. Therefore, the relative survival approach held the

advantage of being able to obtain more comparable results for the international medical

community by removing the background mortality of each country.

Our study highlights the fact that the relationships between variables such as re-

cipient age and gender, and the excess recipient-related mortality were overestimated

when analysing the overall mortality with the usual Cox model. The project was ini-

tiated during the post-doctoral position of the Dr. Ahmed Akl. The main limitation

is the choice of the general population as reference population. Another relevant refe-
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rence population is patients on waiting list. This model will then be used as the expected

mortality in the analysis of transplant-related mortality. Few methodological issues need

first to be solved (see following sections from 9.4 to 9.7).

9.4 An original additive model

Suppose a sample of N kidney transplant recipients. Let di be the post transplanta-

tion time until death with functioning graft of the ith recipient (i = 1, ..., N). Moreover,

let ti be the time between the registration on waiting list and the transplantation. The

observed mortality hazard for this recipient, λO(di|zi), can be written as follow :

λO(di|zi) = λ∗P (ti + di|zP,i) + λE(di|zE,i) (9.1)

where λ∗P (ti + di|zP,i) is the expected hazard function on waiting list at post transplan-

tation time di if the recipient was not transplanted. λE(di|zE,i) is the excess of hazard

related to the transplantation at time di post-transplantation. zP,i ∈ zi and zE,i ∈ zi

represents the respective explicative variables of both hazards. The problem in renal

transplantation is that the observed hazard may be lower than the expected hazard,

in particular after few months post transplantation [156]. Thus, we are proposing the

following additive model into two parts :

λO(di|zi) = λ∗P (ti + di|zP,i) + λE1(di|zE1,i)I(di ≤ τ)− λE2(di|zE2,i)I(di > τ) (9.2)

where λE1() and λE2() represent respectively the excess and the default of mortality of

transplanted patients compared to patients under dialysis. By assuming the proportio-

nality of hazards, zE1 and zE2 will constitute the scoring systems for 1) stratifying the

patients according to their risk of mortality due to transplantation before time τ and

2) stratifying the patients according to the benefit of the transplantation in term of life

expectancy after this acute period. Therefore, regarding to the equation (9.2), the first

step is to estimate λ∗P (ti + di|zP,i), i.e. the mortality and the risk factors of mortality of

patients on waiting list.

9.5 Modeling the mortality on waiting list (PhD student :

K. Trébern-Launay)

We estimate this mortality by using the REIN registry. The baseline is the time of the

inscription on waiting list for transplantation. All the explicative variables are collected
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at this baseline. Suppose a sample of N kidney transplant recipients (j = 1, ..., N). The

estimation of the distribution of the time between the registration on waiting list and the

death have to be taken into account. We have to complete this description regarding the

informative competition between transplantation and death on waiting list : the healthy

patients have more chance to be transplanted. Let K = 1 if the the time tj corresponds

to a transplantation and K = 2 for a death. The hazard function of having the event k

at time tj is :

λk(tj |zP,j) = lim
∆t→0

P (tj < T < tj + ∆t,K = k|T > tj , zP,j)
/

∆t (9.3)

Respecting our last developments with semi-Markov assumption [45, 46, 47, 49], one can

divide the equation (9.3) into two parts :

λk(tj |zP,j) = Pk(zP1,j)λ
′
k(tj |zP2,j) (9.4)

where Pk(zP1,j) is the embedded Markov chain depending of a subset of explicative

variables zP1,j ∈ zP,j :

Pk(zP1,j) = P (K = k|zP1,j) with
2∑

k=1

Pk(zP1,j) = 1 (9.5)

and λ′k(tj |zP2,j) is the hazard function of the waiting time before the event, given that

this event is k and according to a subset of explicative variables zP2k,j ∈ zP,j :

λ′k(tj |zP2,j) = lim
∆t→0

P (tj < T < tj + ∆t|K = k, T > t, zP2k,j)
/

∆t (9.6)

zP1,j can be included assuming a logistic regression and zP2,j can be modeled assu-

ming the proportionality of hazards. These parameters can be estimated by likelihood

maximization (see equation 7.1). Preliminary results based on four different French re-

gions (Pays de Loire, Midi-Pyrénées, Languedoc-Roussillon, Limousin) illustrates the

adequacy of this model (generalized Weibull distribution of the waiting times). We are

waiting the data from Lorraine in order to finalize the results.

The additional interest of this model is also to allow the construction of life tables

as those available for traditional relative survival analyses (Human Mortality Database,

HMD, for instance). The quantity of interest in such table is q(m|zP ), the probability of

dying at month m (before the m + 1th month) post registration, for patients with zP .



120 Chapitre 9. The prognostic in renal transplantation

If the time unit is in days, then :

q(m|zP ) = P (m < T < m+ 1,K = 2|T > m, zP )

= P (t < T < t+ 30,K = 2|zP )/P (T > t|zP )

= P (K = 2|zP1)P (t < T < t+ 30|K = 2, zP2k)/P (T > t|zP )

Thus,

q(m|zP ) = P2(zP1)
S′2(t|zP2k)− S′2(t+ 30|zP2k)∑2

k=1 Pk(zP1)S′k(t|zP2k)

where S′k(t|x) = exp(
∫ t

0 λ
′(u|x)du).

9.6 The accuracy of a marker to predict disease rela-

ted mortality (PhD student : M. Lorent)

Developing prognostic markers of mortality for patients with chronic disease is im-

portant for identifying subjects at high risk of death and for optimizing medical manage-

ment. The usual approach to evaluate the accuracy of such marker is the time-dependent

ROC curve, which is well-adapted for censored data. Nevertheless, as we explained pre-

viously, an important part of the mortality may not be due to the chronic disease and

it is often impossible to individually determine whether or not the deaths are related

to the disease itself. The solution is to distinguish between the expected mortality of a

reference population and the excess mortality related to the disease, by using an additive

relative survival model.

We thus are developing a new estimator of time-dependent ROC curves that includes

this concept of net survival. The objective is to evaluate the capacity of a marker to

predict disease-specific mortality. Simulations are performed in order to validate this

estimator. We also illustrate this method with two different applications : 1) predicting

mortality related to primary biliary cirrhosis of the liver (a well known available data set

often used by researchers in Biostatistics) and 2) predicting mortality related to kidney

transplantation in end-stage renal disease patients. For each application, a scoring system

already established is evaluated.

This project constitutes the first part of the PhD position of Marine Lorent. This me-

thodology is fully explained in the chapter 10 and only concerns the traditional context

with life tables from the general population. The integration of the mortality estimated

from patients on waiting list will be thereafter included. But an important issue is that

this expected mortality estimated from REIN registry (section 9.5) cannot be considered

as fixed parameters, in opposition when life tables are available.
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9.7 How to deal with the absence of life tables (PhD

student : K. Trébern-Launay)

Relative survival models are traditionally used for the evaluation of mortality related

to chronic diseases, taking into account the expected mortality of the general population

(life table by gender, calendar year and age). Therefore, a problem appears when the

expected hazard was not obtained from life tables, i.e. it cannot be assumed as fixed

parameters. This situation can appear when the endpoint is not the time-to-death or

when the reference population is not the general population. We described this issue

previously, but we also have this problem in the analysis of the graft failure (return-

to-dialysis or patient death) between second and first kidney transplant recipients. In

this project, we are proposing an adaptation of the multiplicative-regression model for

relative survival to study the heterogeneity of risk factors between two groups of patients.

This project constitutes the second part of the PhD position of Katy Trébern-Launay.

As a solution, estimation of the parameters and the corresponding standard devia-

tions are based on partial likelihood maximization and Monte-Carlo simulations and

bootstrap re-sampling (details in the chapter 11). The results are validated by using an

adaptation of stratified Cox model. While the traditional Cox model does not provide

original results based on the renal transplantation literature, the proposed relative mo-

del reveals new perspectives that are useful for clinicians. This methodology may be of

interest in other medical fields when the principal objective is the comparison of risk

factors between two populations. This methodology will also be useful for the previous

additive model in which the time-to-death distribution is estimated by using a sample

from the REIN network.
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- Chapitre 10 -

Net time-dependent ROC curves : a solution for

evaluating the accuracy of a marker to predict

disease-related mortality

This work constitutes the first part of the thesis of Marine Lorent. Her developments

have been submitted in statistics in medicine.

10.1 Introduction

Determining early markers of patient survival is essential for optimal healthcare

management. For instance, in kidney transplantation, some papers have focussed on

the prediction of recipient survival after renal transplantation, such as the paper by

Hernández and others [66, 67]. A new therapeutic era has increased long-term graft

survival, leading to a rise in the proportion of deaths unrelated to the kidney transplant

status itself. Moreover, the optimizing medical management of transplant recipients

should decrease mortality specifically related to this status. In addition, the relation-

ship between new markers or therapies and the long-term mortality related to Kidney

Transplant Recipient status (KTR) are currently impossible to demonstrate with cause-

specific approaches, given the impossibility to identify deaths specifically related to the

transplantation status. For example, the occurrence of a cancer that leads to recipient

death may or may not be the consequence of immunosuppressive drug exposure [18].

One solution is to distinguish the expected mortality of the general population and

the excess mortality associated to the disease. The development of these relative survival

models has been a subject of long-standing interest in the analysis of data from cancer

registries [33, 17, 60, 29]. The main objective of such models is to estimate the net sur-

123
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vival, i.e. the survival when the only possible deaths are related to the disease. Recently,

Pohar et al. proposed a comprehensive methodology for such analyse [118, 119, 120, 115].

The methods for evaluating the excess mortality related to the disease are thus becoming

well established in the statistical literature. Nevertheless, little attention has been paid

to the development of methods for evaluating the accuracy of a marker to predict the

deaths related to the disease, while it appears to be useful for medical decision making

and complementary with the prediction of the all-cause mortality.

In diagnostic medicine, the standard criteria used to appraise the predictive capacity

of a marker are its sensitivity and the specificity. Thanks to the initial work of Heagerty

and others [63], these criteria can be estimated for a long-term prognostic marker with

incomplete data. This time-dependent ROC theory has been extended to the competing

risk framework by Saha and Heagerty [132] and Foucher and others [43]. A particular

competing risk model can be used when a distinction is feasible between deaths related

to the disease and those that are not. Again, because it is often impossible to perform

such differentiation in chronic disease analyse, such competing risk approaches do not

appear to have been adapted.

The aim of this paper is to propose an estimator of time-dependent ROC curves

that includes the concept of net survival. We describe this approach in Section 2. We

illustrate its utility in Section 3, via simulation studies, and in Sections 4 and 5 via two

different applications : patients with primary biliary cirrhosis of the liver and recipients

of a kidney transplant.

10.2 Methods

10.2.1 Estimation of the cause-specific hazard

Let X be the random variable representing the prognostic marker and xj the asso-

ciated observation for the subject j (j = 1, ..., n). n is the sample size. Let Tj be the

time of the death of the subject j, with Tj = min(TEj , TPj). TEj corresponds to the

time to death related to the disease and TPj corresponds to the time to expected death

as in the general population. We define Cj as the time of the last follow-up point (right

censoring). The cumulative hazard function of TPj at time t, ΛPj(t), is obtained from life

tables, respecting age, calendar year and gender of the subject j. SPj(t) = exp(−ΛPj(t))

is the corresponding survival function. In order to estimate the distribution of TE , Po-

har and others proposed to weight the at-risk process and the counting process by the

expected survival probability of each subject [115]. More precisely, the number of at-risk

subjects at time t equals Y (t) =
∑n

j=1 Yj(t) with Yj(t) = I(Tj > t,Cj > t)/SPj(t).
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The function I(a) equals 1 if a is true and 0 otherwise. Moreover, the number of

deaths (regardless of the cause) observed before t equals N(t) =
∑n

j=1Nj(t) where

Nj(t) = I(Tj ≤ t, Cj ≥ Tj)/SPj(t). A consistent estimator of the cumulative excess

hazard of TE is defined by

Λ̂E(t) =

∫ t

0

dN(u)

Y (u)
−
∫ t

0

∑n
j=1 Yj(u)dΛPj(u)

Y (u)
(10.1)

10.2.2 Definition of the net time-dependent ROC curve

The aim is to evaluate the capacity of X to predict the deaths related to the disease

up to time τ . By convention, we will assume an increasing disease-related mortality with

the value of X. By defining a binary test at the cut-off c, the net sensitivity represents

the probability of observing X > c given that the disease-related death occurs before

time τ . The net specificity represents the probability of observing X ≤ c given that

the disease-related death occurs after time τ , i.e. seτ (c) = Pr(X > c|TE ≤ τ) and

spτ (c) = Pr(X ≤ c|TE > τ). By adapting the approach of Heagerty and others [63],

these two probabilities can be developed as follows :

seτ (c) = {(1−GX(c))− SX,E(c, τ)}/{1− SX,E(−∞, τ)} (10.2)

spτ (c) = 1− {SX,E(c, τ)/SX,E(−∞, τ)} (10.3)

where GX(a) = Pr(X < a) is the distribution function of X and SX,E(a, b) = Pr(X >

a, TE > b) is the bivariate survival function of X and TE . GX() can be estimated by

using the empirical distribution function

ĜX(c) = n−1
n∑
j=1

I(xj < c) (10.4)

and SX,E() by using the Akritas estimator [4] :

ŜX,E(c, τ) = n−1
n∑
j=1

exp(−Λ̂E(τ |X = xj))I(xj > c) (10.5)

The estimation of the conditional cumulative excess hazard can be obtained similarly

to (10.1) with the Akritas estimator. Let Y π
jl (t) = I(Tl > t,Cl > t, |ĜX(xj)− ĜX(xl)| <

π)/SPl(t) be the at-risk process for the subject l eligible in the neighbors of the subject

j. The number of at-risk individuals at time t equals Y π
j. (t) =

∑n
l=1 Y

π
jl (t). 2π represents

the proportion of included neighbors. Moreover, the number of deaths before t equals

Nπ
j.(t) =

∑n
l=1N

π
jl(t) with Nπ

jl(t) = I(Tl ≤ t, Cl ≥ Tj , |ĜX(xj) − ĜX(xl)| < π)/SPj(t).
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The conditional estimator is therefore :

Λ̂E(t|X = xj) =

∫ t

0

dNπ
j.(u)

Y π
j. (u)

−
∫ t

0

∑n
l=1 Y

π
jl (u)dΛPj(u)

Y π
j. (u)

(10.6)

The capacities of X to predict the disease-related deaths can be summarized by

the net time-dependent ROC curve at time τ , which represents ŝeτ (c) plotted against

1 − ŝpτ (c) for all the thresholds c. The area under the curve (AUC) is computed by

the trapezoidal rule. The 95% confidence interval of the AUC is obtained from 1000

bootstrap replications and by using the 2.5th and 97.5th percentiles of the empirical

distribution. The complete methodology has been implemented in an R package ROCt

available at http ://www.divat.fr/en/softwares/roct and is additionally available from

the authors upon request. For the following applications, lifetime tables were determined

by using the human mortality database (HMD, www.mortality.org).

10.3 Simulation studies

10.3.1 Methods

The expected ages of death in the general population were simulated using a Weibull

PH model (shape and scale parameters equal to 1.60 and 13.75 respectively) according

to sex and year of birth (regression coefficients equal to 0.16 and -0.02 respectively). The

life tables used in the estimation of net time-dependent ROC curves were constructed

based on the same model. Regarding the following application in transplantation, the

patient characteristics were simulated as follows : binomial distribution for sex, 18-years

and 70-years interval-truncated normal distribution for age at baseline and uniform dis-

tribution for calendar year at baseline. Three different scenarios were considered with

various sample sizes (N=100, 250, 500 and 1000) and censoring rates (0.3, 0.5 and 0.7).

The censoring times were simulated independently respecting Exponential distributions.

250 samples were simulated for each combination.

– First scenario : all the observed mortality is in excess. The times to death related

to the disease were simulated using a Weibull PH model (shape and scale para-

meters equal to 1.50 and 4.48 respectively) according to one explanatory variable

Z (regression coefficient equal to 1.20). Z was simulated using standard normal

distribution. Related times-to-death were voluntarily quite short such that almost

all patients died from their disease. The objective was to evaluate the capacity of

Z to predict the excess mortality. In this scenario the area under the traditional



10.3. Simulation studies 127

time-dependent ROC curve (all-cause AUCt) is the value to reach by the area

under the net time-dependent ROC curve (net AUCt).

– Second scenario : deaths may be expected or related to the disease. The times to

death related to the disease were simulated using a Weibull PH model (shape and

scale parameters equal to 1.35 and 29.96 respectively) according to one explanatory

variable Z (regression coefficient equal to 1.50). We were able to exactly identify

the cause of death based on the minimum between the expected and the related

times-to-death. Given the parameters values of the Weibull models, around 50%

of the deaths were related to the disease. By censoring the expected deaths, the

corresponding cause-specific AUCt represents the true prognostic capacity, i.e. the

value to reach by the net AUCt used regardless the cause of the deaths which is

unknown in practice. We performed two analyses within this scenario :

(a) The evaluation of the capacity of Z to predict the excess mortality. Because Z

is specific to the related time-to-event, the all-cause AUCt should be lower than

the cause-specific AUCt. The worst result would be to obtain the net AUCt

similar to the all-cause AUCt. The value to reach by the net AUCt is always

the one obtained by the cause-specific AUCt.

(b) The evaluation of the capacity of the linear predictor of the cause-specific

Cox model based on age, sex and calendar year. Because these three factors

are independent of related time-to-event, the cause-specific AUCt and the net

AUCt should be close to 0.5 (i.e. non informative predictor of the related deaths)

– Third scenario : deaths may be expected or related to the disease, but the excess

mortality also depends on sex and year of birth. The times to death related to the

disease were simulated using a Weibull PH model (shape and scale parameters

equal to 1.50 and 8.17 respectively), which depends on year of birth (regression

coefficient equal to -0.01), sex (0.12) and Z (1.50). Z was always normally dis-

tributed. Given the parameter values of the Weibull models, around 40% of the

deaths were related to the disease. Both of the previous analyses (a) and (b) will

also be performed.

10.3.2 Results

In the first scenario, in which the observed mortality corresponded exclusively to

the excess mortality, the means of the all-cause AUCt (value to reach) and net AUCt

estimations were similar (Table 10.1). The standard deviations decreased for high sample

sizes and for low censoring rates, as for every scenario.
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Table 10.1: Results of the first scenario in which the observed mortality corresponded
exclusively to the excess mortality. Mean and standard deviation (within brackets) of the
all-cause AUCt and the net AUCt at 10 years, calculated from the 250 simulated samples
for each combination of sample size and censoring rate.

Cens. rate Effective All-cause AUCt Net AUCt

≈ 0.30 100 0.879 (0.048) 0.894 (0.048)
250 0.893 (0.028) 0.908 (0.027)
500 0.895 (0.020) 0.911 (0.020)

1000 0.896 (0.015) 0.912 (0.015)

≈ 0.50 100 0.850 (0.091) 0.859 (0.085)
250 0.856 (0.056) 0.865 (0.053)
500 0.856 (0.035) 0.866 (0.033)

1000 0.855 (0.028) 0.865 (0.026)

≈ 0.70 100 0.806 (0.102) 0.811 (0.098)
250 0.810 (0.070) 0.815 (0.068)
500 0.809 (0.049) 0.814 (0.047)

1000 0.810 (0.035) 0.815 (0.033)

In the first analysis (a) of the second scenario (Table 10.2), the net AUCt was

higher than the all-cause AUCt but lower than the cause-specific AUCt. Even if this

observation is true regardless of the sample size and the censoring rate, one can notice

that the distance between the net AUCt and the cause-specific AUCt (value to reach)

decreased for high sample sizes and low censoring rates.

In the second analysis (b) of the second scenario (Table 10.2), conversely, the linear

predictor was only related to the expected time-to-event. The net AUCt were close to 0.5

for a sample size larger than 100. However, the results were roughly equivalent whatever

the censoring rate.

The results of the third scenario are presented in Table 10.3. Even though the excess

mortality also depends on the risk factors of the expected mortality, the results were

similar to those of the second scenario.

10.4 First application : Primary Biliary Cirrhosis data

This well-known data set includes 312 patients with hepatic failure affected by pri-

mary biliary cirrhosis (PBC) from the Mayo Clinic trial conducted between 1974 and

1984. We used the score proposed by Heagerty and Zheng [64] that takes into account

5 variables (bilirubin, albumin, prothrombin time, edema and age) : X = 0.877 * log

bilirubin (in mg.l−1) + 3.013 * log prothrombin time (in min) + 0.785 * (1 if edema and

0 otherwise) - 0.944 * albumin (in g.l−1) + 0.033 * Age (in years)
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0.764
(0

.024)
0.953

(0.007)
0.888

(0.051)
0.584

(0.026)
0.519

(0.030)
0.527

(0.042)
1
000

0.765
(0

.018)
0.955

(0.005)
0.889

(0.037)
0.580

(0.018)
0.519

(0.021)
0.517

(0.031)

≈
0.70

10
0

0.747
(0

.063)
0.940

(0.020)
0.839

(0.105)
0.594

(0.061)
0.559

(0.073)
0.589

(0.085)
2
5
0

0.754
(0

.043)
0.941

(0.014)
0.850

(0.073)
0.591

(0.039)
0.543

(0.048)
0.564

(0.059)
5
0
0

0.752
(0

.032)
0.944

(0.009)
0.846

(0.057)
0.575

(0.031)
0.526

(0.037)
0.534

(0.048)
1
000

0.750
(0

.019)
0.943

(0.006)
0.843

(0.034)
0.573

(0.023)
0.523

(0.024)
0.526

(0.034)
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The objective of this score is to predict the death (regardless of the cause) of patients

on the waiting list for liver transplantation. The mean age at baseline was 50.0 years (±
10.6). 88.5% of the patients were male. The median follow-up was 5.0 years (interquartile

range : from 3.3 to 7.4]). Among the patients included, 125 deaths were observed.

Figure 10.1A presents the all-cause and the net estimations of the cumulative in-

cidence functions for deaths. At 8 years, the all-cause Cumulative Incidence Function

(CIF) was 42.7% (95% CI = [35.6 ;49.0]) whereas the net CIF was 38.9% (95% CI =

[31.3 ;45.7]). Because the all-cause and the net CIF were similar, most deaths seemed

therefore to be related to the disease. Indeed, less than 10% of deaths up to 8 years

were unrelated to the PBC. The areas under the all-cause and the net ROC curves

for a prognosis up to 8 years were 0.83 for both (all-cause 95% CI = [0.77 ;0.89] and

net 95% CI = [0.77 ;0.87]). Thus, the capacity of the score to predict the all-cause and

the PBC-related death was similar regardless the prognostic time (figure 10.1B). One

can notice that both curves logically decrease over the prognostic time, but with local

increases probably due to the variance of the estimator.

10.5 Second application : Kidney Transplant Recipient

data

Hernández and others have developed a score to predict the long-term survival of

kidney transplant recipients (KTR) beyond the first year post transplantation [67]. This

score takes into account 8 variables : recipient age at the time of transplantation, pre-

transplant diabetes (type I or II), pretransplant HCV antibodies, new onset diabetes

within the first year (NODAT), 1-year creatinemia, 1-year daily proteinuria and delivery

of Tacrolimus or Mycophenolate Mofetil (MMF) within the first year. This retrospec-

tive study was conducted on 2348 Spanish patients receiving a kidney allograft in 1990,

1994, 1998 and 2002. Only adult patients at the time of transplantation (>18 years) were

considered. The mean age was 46.3 years (± 13.0) and 64.0% were men. The median

follow-up was 6.8 years (interquartile range : from 4.0 to 8.6]). At the end of the study,

221 patients had died.

Table 10.4 presents the results obtained by Hernández and others using the Cox mo-

del [67]. The score was based on the sum of the products between regression coefficients

and explicative variables, i.e. the linear predictor of the model. The largest positive co-

efficients were obtained for patients above the age of 50 with a daily proteinuria above

1g at 1-year. In contrast, the use of Tacrolimus or MMF was associated with a lower

mortality.
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Figure 10.1: Analysis of mortality in PBC patients (n=312). (A) All-cause and net
estimations of the cumulative incidence functions (CIF) for death according to the
time since registration on the waiting list. (B) Area under the all-cause and net time-
dependent ROC curves according to the prognostic time.
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Table 10.4: Multivariate analysis of risk factors for death beyond 1 year of renal trans-
plantation obtained using a Cox proportional hazard model in the study by Hernández
and others (n = 2348)[67].

Variables Coefficients HR CI95%

Age (reference class :<40 years )
40-50 years 0.80 2.2 [1.5 ;3.3]
50-60 years 1.32 3.7 [2.6 ;5.4]
>60 years 1.91 6.7 [4.6 ;9.9]

Pretransplant diabetes 0.58 1.8 [1.1 ;2.9]
Positive HCV antibodies 0.44 1.5 [1.1 ;2.1]
NODAT at 1-year 0.45 1.5 [1.1 ;2.3]
Serum creatinemia at 1-year (mg.dl−1) 0.56 1.7 [1.5 ;2.1]
Proteinuria >1g at 1-year 0.99 2.7 [1.8 ;4.0]
Use of tacrolimus at the first year -0.48 0.6 [0.4 ;0.9]
Use of MMF at the first year -0.78 0.4 [0.3 ;0.6]

We tested this score by using the prospective DIVAT cohort from Nantes University

Hospital (n = 1230, www.divat.fr). The aim of this analysis was to validate and evaluate

its capacity to predict the KTR-related mortality. Adults receiving a kidney transplant

alone between 1996 and 2009 in Nantes were included. Returns to dialysis were conside-

red as right censoring. Mean age at the time of transplantation was 49.0 years (± 13.8)

and 62.4% of the patients were male. The median follow-up was 4.9 years (interquartile

range : from 2.1 to 7.9]). Eighty-three deaths were observed. The prognostic time was

defined at 10 years post transplantation.

The all-cause and net cumulative incidence functions for death are presented in

Figure 10.2A. The 10-year all-cause CIF was 12.2% (95% CI = [9.3 ;14.9]) while the net

CIF was 7.0% (95% CI = [3.9 ;10.0]), illustrating that among the observed deaths, a

considerable number were not related to KTR. More precisely, around 40% of deaths

up to 10 years were unrelated to KTR. In Figure 10.2B, the area under the all-cause

time-dependent ROC curve was 0.68 at 10 years (95% CI = [0.62 ;0.74]). Therefore,

the capacity of the score to predict the all-cause mortality was acceptable. The area

under the net time-dependent ROC curve was estimated at 0.65 (95% CI = [0.56 ;0.72]).

Consequently, it appears difficult to validate this score in the prediction of KTR-related

mortality, especially considering the lower bound of the 95% CI.

10.6 Discussion

The prognostic of the all-cause mortality for patients with chronic disease is impor-

tant for optimal healthcare management. Nevertheless, a tool to predict deaths related
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to the disease may also constitute a complementary information for medical decision

making. This paper describes an estimator of net time-dependent ROC curves to eva-

luate the accuracy of a marker to predict disease-related death by removing the expected

mortality of a reference population. This methodology is useful when attribution of the

deaths is impossible, which is often the case in long-term chronic disease analysis. In such

situations, cause-specific or competing risk approaches cannot be used. The proposed

method uses a non parametric estimator based on the net survival recently developed

by Pohar and others [115] and the time-dependent ROC theory proposed by Heagerty

and others [63]. The area under the net ROC curve at time t is interpretable : for two

patients randomly selected, it corresponds to the probability that the patient with the

higher value of the marker dies because of the disease, before the patient with the lower

value. Two applications were tested, but the use of net time-dependent ROC curves can

be applied to others areas of medicine and biology, in particular to the analysis of cancer

registries for which the use of one additive relative survival model is well established.

We validated the proposed methodology by simulating the scenarios. If the sample

size is sufficiently high, at least 250 individuals according to our results, the net AUC

provided significant correction of the all-cause AUCt. Indeed, the proposed estimator was

finally close to the theoretical values given by the cause-specific AUCt. As all simulation

studies show, we do not expect to propose an exhaustive validation. The aim of these

analyses was only to provide further information for special studies such as the second

application of this paper devoted to kidney transplant recipients.

We first applied this estimator to study the score proposed by Heagerty and Zheng

to predict mortality in primary biliary cirrhosis patients [64]. We demonstrated that

the score had a similar capacity to predict all-cause and PBC-related mortality. This

result was expected since the all-cause mortality is mainly related to the disease. In this

context, the use of time-dependent ROC curves or net time-dependent ROC curves is

equivalent.

The second application concerned the score proposed by Hernández and others to

predict mortality beyond the first year of kidney transplantation [67]. By applying this

score to a French prospective cohort, we validated the capacity of this score to predict

all-cause mortality up to 10-years post transplantation (AUC = 0.68, 95% confidence

interval [0.62 ; 0.74]). In contrast with the application to PBC data, a significant part of

the all-cause mortality seemed to be unrelated to the kidney transplant status. It may

have been due to ageing : 25% of the patients were over 60 years of age. Nevertheless, the

score obtained by Hernández and others is mainly based on recipient age [67]. However,

knowing that these older recipients have a greater risk of dying than younger patients is

not informative. A more suitable approach would be to evaluate whether transplantation

in older recipients is associated with excess mortality. By using the net time-dependent
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ROC method, we were unable to validate the score by Hernández to predict excess

mortality related to KTR.

The main limitation of the method is that the censoring process was not considered

as informative, i.e. it does not depend on the event being studied. As for many models

in time-to-event analysis, the use of the proposed net time-dependent ROC curves in

the presence of informative censoring can have a noticeable effect on the results of the

analysis.
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A multiplicative-regression model to compare the effect of

factors associated with the time to graft failure between

first and second renal transplant

This work constitutes the second part of the thesis of Katy Trébern-Launay. Her

developments have been submitted in BMC Medical Research Methodology.

11.1 Introduction

In patients facing a first allograft loss, repeat kidney transplantation provides a

better chance for both long-term survival and quality of life than a return to dialysis

[106, 128]. The prognosis of second kidney transplant recipients (STR) compared to first

kidney transplant recipients (FTR) has been frequently studied. To date the analysis

of studies aimed at determining whether STR have a worse prognosis than FTR have

mainly focused on older literature [143, 6]. However recent analyses with adjustments

for confounding factors have challenged this generally accepted idea [11, 154], with the

exception of one large, adjusted study [96]. By modelling the time-dependent hazard

between FTR and STR, we also recently demonstrated that STR have a lower patient

and graft survival than FTR several years after transplantation [148]. According to the

literature, there is no doubt that the excess risk to STR compared to FTR is negligible

considering the improvements in life expectancy and quality of life compared to dialysis

therapy. Nevertheless, as the demand for kidney transplants largely exceeds the supply

[157], it is necessary to evaluate the differences in risk factors between STR and FTR

so as to improve graft allocation.

For this purpose, traditional survival models can be used by merging STR and FTR.

137
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However, it should be noted that : (i) a comparison of risk factors between both groups

would imply testing interactions of all the other explicative variables with the graft rank

and (ii) STR-specific explicative variables (survival time of the first transplant, trans-

plantectomy or time in dialysis before re-transplantation) cannot be analyzed, despite

the knowledge that their use would improve risk evaluation [1, 55, 11, 154].

To overcome these difficulties, we proposed a multiplicative-regression model to eva-

luate differences in risk factors between a specific group and a reference group. This

type of relative approach is often used to study the net survival of patients with cancer,

i.e. after the elimination of all other causes of death [33, 60, 29, 115]. The principle is

to introduce expected mortality rates adjusted for gender, age and calendar year, using

life tables. Andersen et al. [9] proposed a multiplicative model also using life tables. Ho-

wever, to our knowledge, the applications of such methodology to endpoints other than

mortality, with a reference group without a life time, has never been explored despite

its potential to offer original results.

11.2 The multiplicative-regression model for relative

survival

Let the individuals be indexed by j (j = 1, ..., ne) in the reference group and by i

(i = 1, ..., nr) in the relative group. ne and nr represent the sample sizes of the respective

groups. We note ho(ti|zi) the observed instantaneous hazard function at time ti for the

ith individual, where zi is the vector of explicative variables. The observed hazard can

be decomposed in the multiplication of two hazards [17, 9]

ho(ti|zi) = he(ti|zei )hr(ti|zri ) (11.1)

where he(ti|zei ) is the expected hazard for a reference individual with similar characte-

ristics to the ith individual of the relative group. zei is a subset of zi and represents these

common characteristics. hr(ti|zri ) is the relative hazard with zri being a subset of zi.

11.2.1 Estimation of the expected hazard function

Parameters of the expected hazard can be estimated assuming a semi-parametric

and proportional hazards (PH) model [23]. For the jth individual (j = 1, ..., ne)

he(tj |zej ) = he0(tj) exp(βezej ) (11.2)
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where he0(tj) is an unknown expected baseline hazard function and βe is the vector of

regression coefficients associated with zej . The estimations β̂e are obtained by maximizing

the partial log-likelihood :

logPLe(βe) =

ne∑
j=1

δj

{
βezej − log

( ∑
k:tk≥tj

exp(βezek)

)}
(11.3)

where δj equals 1 if the failure was observed for the subject j and 0 otherwise. The

variance-covariance matrix, referred to as V̂ (β̂e), is obtained via the corresponding in-

formation matrix.

11.2.2 Estimation of the relative hazard function

Parameters of the relative hazard can also be estimated using a semi-parametric PH

model. For the ith individual (i = 1, ..., nr), the instantaneous hazard is defined as

hr(ti|zi) = hr0(ti) exp(βrzri ) (11.4)

where hr0(ti) is an unknown relative baseline hazard function and βr is the vector of re-

gression coefficients associated with zri . Of note, for explicative variables not taken into

account in the expected hazard, exp(βr) represents the ratios of the observed hazards,

comparable to the observed hazard ratios (HR) estimated by the PH model (11.2) ap-

plied to the relative group. In contrast, for explicative variables taken into account in the

expected hazard model, exp(βr) represents the weighting factors between the expected

HR (i.e. exp(β̂e)) and the observed HR in the relative group (i.e. exp(β̂e)× exp(βr)). In

other words, for explicative variables involved in both models (11.2) and (11.4), βr = 0

means that the variable has the same effect in both groups. If βr > 0, the hazard ratio

increases in the relative group compared to the reference group. If βr < 0, the hazard

ratio decreases.

By adapting the partial likelihood function (11.3) and assuming the previous estima-

tions of expected parameters as constants, the regression coefficients βr are estimated

by maximizing

logPLr(βr) =

nr∑
i=1

δi

{
β̂ezei + βrzri − log

( ∑
k:tk≥ti

exp(β̂ezek) exp(βrzrk)

)}
(11.5)

Nevertheless, in contrast to the traditional relative survival models based on life

tables, the expected hazards cannot be reasonably assumed as constants since the cor-

responding parameters were estimated from the reference sample. To take into account
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the variability associated with the expected model (11.2) in the estimation of the relative

model, we used Monte-Carlo simulations associated with bootstrap resampling. At each

of the B iterations, this procedure can be divided into the following steps (b = 1, . . . , B) :

(a) Generation of a vector of parameters β̂e∗b using the multivariate normal distri-

bution N
(
β̂e, V̂ (β̂e)

)
.

(b) Generation of a bootstrap sample from the relative sample comprising nr sub-

jects.

(c) Model (11.4) is estimated by maximizing (11.5) in which the simulated para-

meters β̂e∗b are used instead of β̂e. β̂rb is the resulting estimation of the relative

regression coefficients.

Means, standard deviations and 95% confidence intervals can be calculated from the

B estimations β̂e∗b .

11.2.3 Evaluation of the proportional hazards assumption

For models (11.2) and (11.4), the only assumption is the proportionality of the

hazard. Hazards proportionality was checked for each explicative variable by plotting

log-minus-log survival curves obtained by the Kaplan and Meier estimator [81] and

by testing the scaled Schoenfeld residuals [57] separately in the reference and relative

samples. Indeed, if the observed hazard ratios are constant regardless of time in both

groups, the ratio between both observed hazard ratios, i.e. the weighting factor exp(βr),

will also be constant.

11.2.4 Software

All statistical analyses were performed using R version 2.15.1 [124]. The proposed

multiplicative-regression model for relative survival was implemented in an R package

MRsurvival available at www.divat.fr/en/softwares/MRsurvival.

11.3 Risk factor differences between first and second

kidney transplants

11.3.1 Study population

Second transplant recipients (STR) constituted the relative group of interest. Reci-

pients older than 18 years at the date of transplantation between 1996 and 2010 were

selected from the French DIVAT (www.divat.fr/en) multicentric prospective cohort
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[86]. Only recipients with a maintenance therapy with calcineurin inhibitors, mamma-

lian target of rapamycin inhibitors or belatacept, in addition to mycophenolic acid and

steroids were included. Simultaneous transplantations were excluded. Recipients with

at least one missing data for all the variables taken into account in the expected ha-

zard (listed below) were excluded. The same criteria were applied to the reference group

composed of first transplant recipients (FTR).

Among FTR meeting the inclusion criteria, some patients were also part of the STR

group as they had received two transplants during the observation period. These 37

patients, who were included in both cohorts, represented 2% and 7% of the FTR and

STR groups respectively. Given the large number of explicative variables, it seemed

reasonable to assume conditional independence of the two transplantations of a given

patient. In order to validate this assumption, we performed a frailty Cox model [129]

based on the 37 individuals who were included in both groups. The frailty term was

assumed to be Gamma distributed. The variance of the random variable was estimated

at 5.10−9 (p = 0.9948). Therefore, no intra-individual dependency was demonstrated.

We identified 2462 FTR who met the inclusion criteria. We excluded 256 FTR

(10.3%) with one missing data for at least one of the variables taken into account in the

expected hazard model. Finally, 2206 FTR made up the reference group. The principal

outcome was the time between transplantation and graft failure, which was the first

event between return to dialysis and patient death with a functioning graft. The mean

follow-up was 3.4 years with a maximum of 13.7 years. During the observation period,

191 returns to dialysis and 109 deaths were observed. 641 STR potentially made up the

relative group of interest, but 75 STR (11.7%) with missing data for explicative variables

of the expected hazard were excluded. Finally, 566 STR were included in the group of

interest. The mean follow-up was 3.1 years with a maximum of 13.1 years. During the

observation period, 72 returns to dialysis and 34 deaths were observed.

The demographic and baseline characteristics at the time of transplantation are pre-

sented in Table 11.1. Regardless of the group, the majority of patients received a trans-

plant from a deceased donor and the recipient gender was comparable between groups.

However, STR were younger and their transplants were provided by younger donors.

Recurrent nephropathy, past history of cardiac disease, hepatitis and malignancy were

more frequent among STR, but STR had less diabetes and were less likely to be obese

at the time of transplantation. Compared to FTR, STR received better HLA-matched

transplants, but their cold ischemia time was longer and they were more immunized

against HLA class I and class II antigens (historical Panel Reactive Antibodies) than

FTR. They were also more frequently exposed to induction therapy with a lymphocyte-

depleting agent.
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11.3.2 Analysis of risk factors in the FTR population

As previously illustrated, it is well-established that FTR and STR are not intrinsi-

cally comparable. Thus, for the analysis of risk factors in the FTR population, adjust-

ments were made (i) for all of the possible pre- or per-transplant immunological and

non-immunological confounding factors according to experts and (ii) for all the baseline

parameters differentially distributed between FTR and STR (Table 11.1). Thus, the ex-

pected hazard of graft failure was estimated according to recipient age and gender, causal

nephropathy, comorbidities (including history of diabetes, hypertension, cardiac or vas-

cular disease, dyslipemia, B or C hepatitis and malignancy), obesity, pre-transplantation

immunization (PRA) against class I and class II antigens), donor age, deceased or li-

ving donor status, Epstein-Barr Virus (EBV) serology, period of transplantation, level

of HLA-A-B-DR mismatches, induction therapy and cold ischemia time according to a

threshold of 24 hours. This modelling is explained in detail in the paper by Trébern-

Launay et al. [148]. The final multivariate model in the reference group of FTR is

presented in Table 11.2.

11.3.3 Relative hazard modelling

The final relative model is presented in Table 11.3. Expected HR are also presented

in the first column (but estimated previously in FTR) to enable a direct comparison

between FTR and STR. Donor gender and waiting time before re-transplantation were

not taken into account in the expected hazards. As a validation, the corresponding HRs

were thus similar between the multiplicative relative model and the Cox model applied

to the STR group. Therefore, we calculated a 1.5-fold increase in risk of graft failure for

STR with grafts from males compared to STR with grafts from females (p = 0.0320).

This risk factor was not identified for FTR (p > 0.05, Table 11.2). Moreover, STR who

waited more than 3 years in dialysis before retransplantation had a 1.9-fold increased risk

compared to STR with a shorter waiting time (p < 0.0001). Of note, for both explicative

variables, 95% confidence intervals were also similar between the relative and the Cox

model.

In contrast, the effect of recipient age and donor age seemed significantly different

between FTR and STR (p < 0.05). More precisely, the expected HR associated with

recipient age ≥ 55 years would be 1.39 in the STR group regarding the HR observed

in the FTR group (11.2). In fact, the relative model showed that this HR was 1.6-fold

higher for STR compared to FTR (CI95% = [1.01-2.72], p = 0.0480). This results was

validated by the HR estimated from the Cox model applied in the STR group (2.65 ≈
1.39 × 1.65). Similarly, the effect of donor age ≥ 55 years was nearly two fold lower
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for STR than for FTR (CI95% = [0.33-0.99], p = 0.0440), while it was identified as a

significant risk factor for FTR (Table 11.2, HR = 1.34, p = 0.0313). This results was

also concordant with the HR estimated from the Cox model applied to the STR group

(0.83 ≈ 1.34 × 0.59). Of note, the relationship between the recipient gender and the

risk of graft failure was not found to be significantly different between FTR and STR

(p = 0.0720). In order to validate the variance estimations of these relative parameters,

we compared the 95% CI of the observed HR obtained by a Cox model applied to the

STR-group with the 95% CI of the expected HR deduced from the sum of the B sampled

expected parameters and the B simulated relative estimations (last columns of the Table

11.3).

11.4 Discussion

Although the comparison of survival between first and second kidney transplants

has been frequently performed, no study has addressed the issue of comparing the risk

factors associated with the time to graft failure between both groups. Understanding the

factors influencing the long-term evolution of STR compared to FTR would benefit the

medical management of graft attribution by identifying patients with the best outcomes.

The absence of literature focusing on this question may be partially explained by the

methodological issues associated with such studies. Indeed, the Cox model is classically

used to explore risk factors influencing graft survival and interactions can be included

to evaluate risk factor differences between FTR and STR. However this approach has

several limitations. Firstly, it implies testing interactions between the graft rank and each

explicative variable, increasing the number of parameters and making interpretations

difficult. Secondly, as only covariates common to both groups can be taken into account,

this excludes explicative variables specific for one group. Concerning our application,

this constitutes a limitation as several STR-specific explicative variables are known to

be associated with second graft prognosis : the first graft transplantectomy [1], the first

graft survival duration [55, 154] or the time in dialysis before re-transplantation [11].

This paper describes an innovative use of a multiplicative-regression model for rela-

tive survival with the aim of accurately comparing risk factors between two groups of

patients. This approach was initially used to analyze relative mortality using life tables

(in which the expected rates are considered as constants). Thus, we proposed a semi-

parametric model based on partial likelihood maximisations : one Cox model for the

expected hazard and one multiplicative-regression for the relative hazard. The standard

deviations of the relative parameters were obtained by Monte-Carlo simulations asso-

ciated with bootstrap re-sampling. Moreover, the estimations of the relative parameters
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and the standard deviations of the multiplicative-regression model were validated by

recomputing the HRs and the confidence intervals of the Cox model estimated in the

relative group. In this multiplicative modelling, the regression coefficients are straight-

forward interpreted in terms of interactions. Moreover, specific explicative variables can

be included in the relative model.

The results showed that male donor gender and long waiting time before re-transplan-

tation were two specific-STR risk factors : donor gender was not significantly associated

with the risk of graft failure in the FTR population and the waiting time before retrans-

plantation was only related to STR. The interpretations were similar to hazard ratios

from a Cox model preformed on the STR group. Conversely, two explicative variables

appeared to be differently associated with the risk of graft failure between STR and

FTR. These factors were involved in the regression of the expected hazard, therefore

they represented weights of the expected hazard ratio. More precisely, we showed for

the first time that the adverse effect of recipient age was enhanced for STR as com-

pared to FTR. The main clinical explanation is a cumulative effect of the risk factors

for STR, in particular because of the cumulative exposure to immunosuppressive drugs

during the first transplantation period. From a clinical point of view, this result may

imply that clinicians should pay a particular attention to recipient age in second kidney

transplantations. Also, for the first time to our knowledge, this study identified an at-

tenuation of the risk factor related to older transplants for STR as compared to FTR.

Two explanations may be outlined : (i) an indication bias with only high-quality do-

nors (without diabetes, hypertension or cardiovascular disease) proposed to STR ; (ii) a

higher non-HLA immunization in STR, explaining why graft failure is generally due to

immunological phenomena rather than transplant quality.

Although we illustrated the advantages of this approach in renal transplantation, this

methodology may be useful in number of other clinical and epidemiological applications.

We propose an R package for this purpose. Of course, the aim of this multiplicative

relative approach is not to replace traditional survival models, but rather to provide a

more suitable alternative when the main objective is to compare risk factors between

two populations, in particular when population-specific covariates need to be included.

As always, there are several avenues for further work. The main limitation of the

method is that only time-invariant explicative variables are considered. A generalization

with time-dependent covariates is possible by adapting the partial likelihood in this

context [84].

In conclusion, the proposed multiplicative-regression model for relative survival en-

abled the analysis of an outcome other than mortality, using a reference group other

than the general population. This study highlighted novel risk factor differences bet-
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ween first and second kidney transplant recipients. These results could help improve

the management of patients waiting for a second graft. They may also encourage the

widespread use of this original methodology in other medical fields.
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- Chapitre 12 -

The extension to other medical fields

As illustrated in all the previous chapters, our developments were mainly motivated

by the analysis of kidney transplant recipients. Nevertheless, these developments can

also be useful to other medical fields.

12.1 Application in bone marrow transplant

12.1.1 Context

Allogeneic haematopoietic stem cell transplantation (HSCT) is a curative option for

many haematological malignancies. However, HSCT is limited by its toxicity, especially

graft-versus host disease (GVHD) both in its acute and chronic forms. Chronic GVHD

(cGvHD) is a relatively common complication, with an incidence ranging from 40% to

70% and is one of the most severe consequences of HSCT. On the long term, occurrence

of cGvHD is associated with non-malignant organ or tissue dysfunction, infections, ab-

normal immune reconstitution and secondary cancers. cGvHD is lethal in approximately

15% of transplant recipients.

Many studies have identified risk factors associated with the development of cGvHD.

However, most of them were retrospective, single-centred or/and reported on a relati-

vely limited number of patients. One of the largest studies was recently published by

Flowers et al. [40] evaluating 2941 adult and paediatric patients. This study identi-

fied donor-recipient HLA mismatch and the use of unrelated donors as risk factors for

developing cGvHD, whereas total body irradiation was strongly associated with acute

GVHD (aGvHD). Nevertheless, the occurrence of aGvHD has been documented as a

main risk factor for subsequent cGvHD. Moreover, G-CSF-mobilized peripheral blood

149
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Figure 12.1: Multistate evolution of patients after allogeneic haematopoietic stem cell
transplantation

stem cells are nowadays a well-established risk factor for cGvHD. Despite identification

of these risk factors, no large multicenter or prospective cohorts have accurately and

comprehensively assess risk factors for cGvHD.

Furthermore, the results from literature are limited by the relative weakness of the

statistical methods, especially given the complexity and the dynamic nature of cGvHD

evolution after HSCT (Figure 12.1). Cause-specific Cox model or competing risk models

are often used in order to evaluate specific associations of factors on each transition (for

instance in Flowers et al.), but multistate model would be more adapted to describe pre-

cisely the real dynamics. Factors can, for instance, firstly influence the time-to-aGvHD

which secondly constitutes one of the risk factors for cGvHD development among the

other factors. Risk factors for cGvHD without aGvHD can also be identified in the same

model and all these estimations take into account the informative censoring of deaths.

Relapses will also be considered as competing event. The development of such models

can improve the knowledge about clinical risk factors of GVHD.

Despite this perfectible literature on risk factors for patients and GVHD, predicting

GVHD still remains elusive to physicians. This is partially caused by the incorrect use

of statistical terminology, resulting in overoptimistic interpretation of results. Therefore,

there is an important similitude with kidney transplantation [42]. For instance, MacMil-

lan et al. [95] compared the prognostic utility of the Minnesota versus the Center for

International Blood and Marrow Transplant Research (CIBMTR) grading systems. As

no GVHD grading system optimally predicted outcomes, a novel aGvHD risk score was

proposed. These analyses were based on different logistic and Cox regressions which are

not suitable to such multistate context. Moreover, a growing body of novel literature

in biostatistics demonstrates that odds ratios or hazard ratios and the corresponding
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p-values do not indicate whether a given variable (clinical factor, biomarker or a scoring

system) will be a good predictor. New indicators like time-dependent Receiver Opera-

ting Characteristic (ROC) curves or other concordance indexes for multistate data are

likely more appropriate [132, 47], in order to provide clinicians with a clearer and better

understanding of the true clinical utility of GVHD predictive tests.

12.1.2 Preliminary results

We have begun this collaboration with Pr. M. Mothy and Dr. E. Brissot few years

ago. The principal objective of this work was to identify cytokines associated with the

time to extensive cGvHD (without considering the local cGvHD). 152 patients treated

with allo-SCT between February 2005 and July 2008 has been included in the study. 40

cytokine levels have been collected at 3 months post-treatment.

The data have been collected at baseline, i.e. the time of cytokine measurements (age,

gender, chemotherapy, donor characteristics, recipient and donor CMV serology, disease

origin, prophylactic treatment, initial disease and ATG treatment), within the first 3

months (date of aGvHD) and prospectively afterword (date of cGvHD, characteristics

of cGvHD, date and cause of death). The principal outcome was the time between

the cytokine measurement and the extensive cGvHD. Cytokines were first evaluated by

univariate Fine and Gray model. In such competing risk models, the deaths without

extensive cGvHD were treated as competing event. The right censored observations

consisted in patients alive without extensive cGvHD at the end of the follow-up. An

important question is to identify the cytokines with a possible independent effect from

the well-established clinical determinants. We thus performed univariate analyses of the

clinical parameters. Significant clinical parameters (p < 0.25) were further analysed in a

multivariate Fine and Gray model. We finally retained the clinical parameters if p < 0.05.

Then, we computed the previous clinical multivariate model by adding each cytokine one-

by-one. The prognostic capacities of the significant cytokines previously retained were

evaluated by computing the non-parametric estimator of the time-dependent Receiver

Operating Characteristic (ROC) curves proposed by Saha and Heagerty for competing

events [132].

According to the previous methodology, the cytokine MDC was significantly asso-

ciated with the time to extensive cGvHD regardless the analysis : (i) univariate, (ii)

by adjusting on clinical risk factors and (iii) by adjusting on clinical risk factors and

cytokines. We thus decided to study its capacity to predict extensive cGvHD. The area

under the ROC curves for a prognostic up to 2 years was 0.69 (CI95%=[0.57,0.78]).
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12.1.3 Description of the project plan

To support this project, we answered to the call for proposals in Translational Cancer

Research (Institut National du CAncer, INCA 2013).

a. The construction of the data base.

The first part of the project concerns the epidemiological analyses. The data will

be extracted from the registry of the European group for Blood and Marrow Trans-

plantation (EBMT). EBMT registry is a voluntary working group of more than 500

transplants centers, whose participants are requested to report all consecutive stem cell

transplantations and follow-ups once a year. We have decided to select a cohort with

restricted criteria in order to obtain a homogeneous population : data of adult acute

myeloid leukemia in first and second complete remission at transplantation and given

G-CSF-mobilized peripheral blood stem cells (PBSC) from HLA-matched sibling or

HLA-matched unrelated donors, between 2000 and 2009 after educed-intensity conditio-

ning regimen. Patients given ex-vivo T-cell depleted grafts, those given other stem cell

sources than PBSC, those given pre-emptive donor lymphocyte infusions and those who

failed to engraft will be excluded. The date and severity (limited versus extensive) of

cGvHD are prospectively collected using the EBMT Minimum Essential Data-A Form.

The sample will be randomly divided into two groups : 2/3 of the patients in the training

sample (for the risk factors analysis and for the clinical-based scoring systems for event

prediction) and 1/3 in the validating sample. Regarding the following statistical analy-

sis, no sample size can be a priori calculated. We will include all the patients regarding

the previous inclusion criteria. This study will concern more than 1800 patients.

b. The estimation of multistate model, the construction of predictors and the eva-

luation of the prognostic capacities.

Semi-Markov models will be used to model the evolution of the patients within

several states. Covariates can be included in the waiting time hazard function or in

the embedded Markov chain. The waiting times will be assumed generalized-Weibull

distributed, with a possible simplification if necessary into Weibull or even Exponential

distributions. No interval-censoring will be observed. The estimations of parameter will

be performed by likelihood maximization. The goodness-of-fit of the model will be done

according to the methodology we proposed in 2010 [46]. Univariate and multivariate

analyses will be performed respecting type I error at 0.20 and 0.05, respectively. The

scoring systems for the predictions of each time-to-transition will be obtained by the

expected semi-Markov hazard function (the join process of the sequence of states and

the time of the transition). These estimations will be done based on the patients in the

training sample.
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Time-dependent ROC curves will then be adapted to this multistate context in order

to evaluate each prognostic capacity of scoring system for the corresponding transition

and for the overall capacity to predict cGvHD. This step is associated with the continuity

of our previous developments [47]. These ROC curves will be estimated based on the

patients in the validation sample.

c. Serum samples and cytokine measurements

For the purpose of this study, peripheral blood samples have been collected around

day 100 after allo-SCT. After blood collection, serum has been immediately obtained by

centrifugation, transferred into cryotubes, and is stored at -800C until further processing.

A total of 40 cytokines will be studied on blood samples. These 40 cytokines are chosen

based on previously published data and based on their putative mechanistic role in

the pathophysiology of cGvHD. They will be determined by the bead-based multiplex

protein array technology. These analyses will be performed by using the biocollection

constructed in the Nantes university hospital. A total of 250 patients will be included.

These patients will not be included in the previous analyses based on the multi-centric

cohort constituted by 1800 patients. Therefore, it will be possible to independently

evaluate if the cytokines can improve the clinical-based prognostic of cGvHD and to

propose a specific bio-clinical-based signature of cGvHD.

12.2 Prognostic of valvular heart disease after re-

placement by bioprosthetic valve

Valvular heart disease can be acquired or congenital. Irrespective of the etiology of

valvular heart disease, deterioration of the native valve can result in mitral or aortic

regurgitation or stenosis, necessitating replacement with a prosthetic valve [74]. The

main issues with bioprosthetic valves are their finite lifespan and their risk of Structural

Valve Deterioration (SVD). SVD does not occur for mechanical valve, but it requires

lifelong anticoagulation to prevent thromboembolic complications [37]. One advantage of

bioprosthetic valves is that they are much less thrombogenic, but serious SVD can require

reoperation. Each year, 300.000 patients world-wide receive a bioprosthetic valves.

The objective of the PhD thesis of Thomas Senage, junior cardiac surgeon, is to

better evaluate this SVD risk for patients with bioprosthetic valves. Indeed, on can

expect a large under-estimation of the SVD incidence since only valve biospies from re-

operated patients constitute the official diagnostic of SVD. Nevertheless, patients who

cannot be re-operated or who died are not taken into account. In order to avoid this

important bias due to competing various health deteriorations, Dr. T. Senage and Dr.
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J.C. Roussel are proposing a systemic diagnostic of SVD by regular echography. They

have constituted a cohort with more than 500 patients. T. Senage has begun his thesis

in December 2012 in the SPHERE laboratory.

In parallel to this clinical-based project, Dr. J.C. Roussel is in charge of a clinical

part of a European project (FP7) devoted to the investigation of the role played by the

immune system in the premature structural deterioration, calcification, and failure of

bioprosthetic valves. Such immunological responses may be underestimated according

to the little attention paid in the literature. If the project is accepted, the SPHERE

laboratory will be central in the statistical and methodological expertise regarding the

coherence with our previous developments in renal transplantation.

12.3 Meta-analysis of prognostic marker in cancer

Cancer is a major public health problem but personalized medicine is a promise

of future cures. This will completely change how treatments are given. Risk stratifi-

cation at diagnosis permits the identification of patients who may benefit from active

surveillance, those who might benefit from immediate local treatment and those who

require aggressive multi-modal therapy. Numbers of important prognostic factors have

been identified in the literature, some generic to all cancers and some specific for different

cancer types. However, these studies differ from each other with regard to population

studied, study design, sample size and factors adjusted for in the analyses. Therefore,

recent meta-analyses were performed to summarize the role of such prognostic markers.

Meta-analysis results for the purpose of integrating the findings of different studies. All

these meta-analyses are based on pooled hazard ratios. Nevertheless, hazard ratio only

indicates an increase in failure risk, not the prognostic accuracy.

As previously explained (chapter 5), we proposed a solution to this methodological

issue. We developed a method, called SROCt, to assess time-dependent summary ROC

curves from published results (Combescure et al., 2012). In order to compute the SROCt

estimator, the following data have to be collected from each paper : the survival curves

par strata defined by the marker, the threshold(s) used for defining the strata and the

number of individuals in each strata. As always, there are several avenues for further

work regarding these first biostatistical developments : this approach needs parametric

assumptions on the distribution of the marker and on the survival process.

The overall objective of this project is to improve the results from published stu-

dies and meta-analysis of prognostic marker in cancer research. These improvements

can be divided into two complementary parts. 1) We will continue the methodological

developments with developments to derive time-dependent sensitivities, specificities and
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likelihood ratios from published survival curves. It is also important to develop a precise

non-parametric estimation of summary survival curves based on such aggregate data.

Then, these developments will be used to improve the SROCt framework, especially by

exploring a non-parametric estimation. 2) This SROCt methodology will be applied to

the eight meta-analyses. According to the interest of the results in oncology and the ex-

pertise area of the ICO (Institut de Cancérologie de l’Ouest), we will particularly focus

on two studies : the human epidermal growth factor receptor 3 (HER3) in solid tumor

[105] and vascular endothelial growth factor (VEGF) in ovarian cancer [159].

The eight meta-analyses will offer the main list of publications for each topic. In or-

der to potentially complete these lists for the two main analyses of our project, we will

perform additional researches. Only the studies with the description of survival curves

according to the level of the marker will be included. In order to estimate these mo-

dels and compute SROCt curves, we will use the R package SROCt we have developed

(www.divat.fr) and we will extend. First, by using utility scores of the possible out-

comes of a prognostic test, one can compute the optimal threshold, i.e. the point on the

ROC curve that best achieves the goal desired by the decision maker. Second, a methodo-

logy will be developed for non-parametric and time-dependent sensitivities/specificities

from published survival curves. A ROC plot can represent these sensitivity and specifi-

city pairs. Based on this plot, regression may be performed to obtain a continuous ROC

curve, which may constitute alternative estimator of SROCt curve. Third, one can also

improve the non-parametric estimation of pooled survival curves.

It is possible that the SROCt estimations based on these meta-analyses will not vali-

date the prognostic capacity of the different markers. Nevertheless, we hope to validate

few markers regarding their prognostic capacity and to additionally propose validated

cut-offs for medical decision making. Regardless the negativity or positivity of the results

we will obtain, this project will improve the evaluation of the clinical utility of these

markers. The 8 selected meta-analyses appear important in terms of public health and

were recently published, underlying the relevance of our project.

To support this project, we answered to the call for proposals in ”Projets libres de

recherche en Sciences Humaines et Sociales, Epidémiologie et Santé Publique” (Institut

National du CAncer, INCA 2013).
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Conclusions et Perspectives

L’ensemble de ce document résume 9 ans de travail de recherche depuis l’obtention de

mon DEA. Il apparait évident que ce travail a été nourri et guidé par les projets issus de la

cohorte DIVAT. Les patients transplantés représentent un terreau riche pour la recherche

épidémiologique et Biostatistique. Il s’agit en effet d’une pathologie qui commence à une

date précise et dont les paramètres du suivi sont connus et codifiés. Le suivi dès la greffe,

l’évolution complexe et la volonté de personnaliser la prise en charge, nous ont amené

successivement à développer trois axes de recherche dans le domaine de l’analyse des

données incomplètes : les modèles multi-états, les courbes ROC dépendantes du temps

et les modèles de survie relative. Les passerelles entre ces thématiques sont nombreuses.

Nous développons par exemple les courbes ROC en présence de risques compétitifs, les

courbes ROC nettes ou les modèles semi-Markoviens avec prise en compte de la mortalité

attendue.

L’objectif à court terme est de finaliser ces projets. Certains de ces travaux ne

sont pas présentés ici, en particulier les développements avec Christophe Combescure

(Hôpitaux Universitaires de Genève, ex : courbes ROC pronostiques ou courbes de sur-

vie moyennes à partir de méta-analyses) ou ceux d’Etienne Dantan (modèles conjoints,

interprétations et développements d’indicateurs pronostiques).

Je crois à la continuité des travaux méthodologiques que nous menons en parallèle

des travaux plus appliqués de recherche clinique. Le score KTFS, obtenu à partir de

l’analyse de DIVAT et de l’utilisation pour la première fois en transplantation rénale de

courbes ROC dépendantes du temps, est un bon exemple. Ce travail a abouti aujour-

d’hui à un nouvel essai clinique financé par PHRC national (TELEGRAFT). Cette étude

randomisée en cours devra valider l’utilité du score pour adapter la prise en charge du

patient transplanté rénal. TELEGRAFT ouvre de nouvelles perspectives de recherche :

la qualité de vie, l’adaptation des patients à leur maladie et les coûts de leur prise en

charge étant des paramètres très importants à prendre en compte. De nouvelles colla-

borations s’ouvrent ainsi avec nos collègues de l’équipe SPHERE (EA-4275) : Philippe

Tessier (MCU) pour l’économie de la santé, Angélique Bonnaud-Antignac (PU) pour la
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psychologie clinique, Véronique Sébille-Rivain (PUPH) et Jean-Benoit Hardouin (MCU)

pour le développement de questionnaires et l’interprétation des données subjectives des

patients (PRO, Patient Reported Outcome). Un projet autour de l’évolution des rece-

veurs d’une greffe préemptive renforcera aussi cette cohérence (projet PHRC 2013).

Les autres outils pronostiques en cours de construction ouvriront sur des projets

similaires. Ces outils étant issus de données observationnelles, il est important de les

valider à partir d’études expérimentales. Les cinq prochaines années seront donc axées

sur cette poursuite scientifique.

Je souhaite conserver cette direction, cela sous-entend de consolider notre équipe

regroupée autour de l’analyse de données censurées. L’obtention de l’HDR va dans ce

sens. La place que prend et pendra Etienne Dantan est essentielle pour ce renforcement.

Je suis cependant convaincu que la seule dimension universitaire que nous apportons

sera limitée, que ce soit pour le temps que nous pouvons consacrer à nos activités de

recherche en plus de l’enseignement et du soutien méthodologique au CHU de Nantes,

que pour l’augmentation de l’effectif de ce groupe de travail. Notre évolution est liée

à celle de l’équipe EA. L’obtention d’une qualification INSERM serait par exemple un

moyen de pérenniser certains jeunes et de permettre des recrutements extérieurs de cher-

cheurs statutaires. A nous de travailler pendant les années à venir (contrat quadriennal

2017) pour atteindre ce niveau d’exigence. De nos résultats scientifiques dépendra cette

progression.

Peut-on prévoir au-delà un projet scientifique qui sera d’autant plus aléatoire qu’il

dépend de variables extérieures ? Il s’agit en particulier d’une structuration scientifique

et cohérente de l’épidémiologie clinique à Nantes. Une solution abordée dans le dernier

chapitre est l’extension à d’autres cohortes.

Il peut s’agir d’extensions autour de l’insuffisance rénale avec d’autres bases de

données comme le registre national REIN (patients en dialyse) ou comme DIVA-Neph

(patients en insuffisance rénale chronique, M. Hourmant). Les travaux épidémiologiques

retraçant les trajectoires complètes des patients en insuffisance rénale seront très riches.

De telles études sont peu nombreuses car les systèmes d’information sont souvent cloi-

sonnés. En misant sur l’avenir de l’interconnexion de ces réseaux, la modélisation de ces

trajectoires nécessitera de développer des modèles statistiques adaptés.

Il peut aussi s’agir de l’extension vers d’autres pathologies. Cette ouverture est impor-

tante. Je pense en particulier à la greffe de moelle osseuse (M. Mothy), à la cancérologie

(J.M. Classe), à la sclérose en plaque (D. Laplaud) ou aux prothèses valvulaires car-

diaques (J.C. Roussel). Ces extensions vont bien sur lever à leur tour d’autres difficultés

méthodologiques qui viendront nourrir notre propre recherche.
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Ces projets ne devront pas remettre en question nos collaborations étroites avec

l’équipe INSERM U1064 de S. Brouard et la recherche de biomarqueurs. Cette recherche

translationnelle est très structurée grâce à une équipe internationalement reconnue et à la

biocollection attenante à DIVAT. C’est à ce stade de structuration que la Biostatistique

devient centrale, faisant le lien entre la biologie fondamentale et les retombées en termes

de médecine personnalisée et de santé publique.

Pour conclure sur un plan plus personnel, et bien que les projets liés à l’analyse

de données longitudinales incomplètes m’apparaissent toujours aussi passionnants, je

pense avoir besoin de changements pour conserver la motivation et le dynamisme indis-

pensables à tout chercheur. Avant d’envisager cette seconde période, il reste important

de consolider notre thématique et son groupe de travail.
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[125] M Racapé, JP Duong Van Huyen, R Danger, M Giral, F Bleicher, Y Foucher,

A Pallier, P Pilet, P Tafelmeyer, J Ashton-Chess, E Dugast, S Pettré, B Charreau,
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