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A marginal–pairwise-likelihood estimation approach is examined in the mixed Rasch model with the
binary response and logit link. This method belonging to the broad class of composite likelihood pro-
vides estimators with desirable asymptotic properties such as consistency and asymptotic normality. We
study the performance of the proposed methodology when the random effect distribution is misspecified.
A simulation study was conducted to compare this approach with the maximum marginal likelihood. The
different results are also illustrated with an analysis of the real data set from a quality-of-life study.

Keywords: binary data; composite likelihood; fixed effects; generalized linear mixed model; marginal–
pairwise likelihood; marginal likelihood; quality-of-life; random effects; Rasch model; variance component

1. Introduction

Item response theory (IRT) models (see [1,2, pp. 3–14]) are increasingly used in various fields,
where subjective variables need to be measured using questionnaires with dichotomous or polyto-
mous items. They are sometimes used in health sciences and clinical trials, where these subjective
variables could be pain, depression or quality-of-life. Other examples come from marketing where
satisfaction or attitudes need to be well-measured and educational-testing services where well-
calibrated examinations need to be produced. One of the most popular IRT models is the Rasch
model [3]. For a single administration of a questionnaire, there are in fact two Rasch models: one
with fixed individual parameters and another one with the random effect. The first model belongs
to the family of generalized linear models (GLMs) and the second one to the generalized linear
mixed models (GLMMs). When the primary interest is the population or to compare treatment
groups, we consider the Rasch model with random effects. The fixed-effects parameters and the
random effects of this model are, respectively, called item difficulty parameters and latent trait
(see [2, pp. 8–9]). It is well known that estimating these parameters by the method of maximum
likelihood faces computational difficulties.
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420 M.-L. Feddag et al.

Parameter estimation in GLMMs has been tackled in several ways but rarely from a general
point of view. Thus, in order to evaluate the likelihood, integral calculus is required which is not
analytically feasible. Therefore, several kinds of approximations are considered. One approach
consists in numerical approximations of the integral by the Gaussian quadrature [4]. The useful
approach is the maximum of the marginal likelihood (MML). Feddag et al. [5] have proposed a
generalized estimating equation (GEE) approach by combining the work of Prentice [6], and Pren-
tice and Zhao [7] and the approximations of Sutradhar and Rao [8]. As all the methods are based
on the Taylor approximations (e.g. for the penalized quasi-likelihood (PQL) approach see [9,10]),
the main disadvantage of these approaches is their validity only for the small variance component.
Lee and Nelder [11] introduced the h-likelihood for inference in hierarchical GLMs, which can be
viewed as an extended likelihood. It avoids the computational difficulties in the calculation of the
maximum likelihood for complex models [12, chap. 6, pp. 173–199]. This approach has some bias
for binary data, but it has been improved by a modification such as the second-order correction
method to hierarchical-likelihood (HL) and denoted by HL(2). In the simulation study of Lee
et al. [13], it is shown that PQL and HL may have a large bias in estimating the fixed parties,
but both seems to have non-ignorable bias in estimating the variance component. By using the
second-order HL (HL(2)), we can further reduce the bias of HL, which then becomes almost
identical to MML.

Alternatively to these classical approaches, we propose the pairwise-likelihood (denoted by
PL) method to estimate simultaneously the fixed-effect parameter and the variance component
of the mixed Rasch model. In contrast to the approximate methods, this approach does not have
any restriction on the variance component. The main advantage of this method is that it belongs
to the broad class of pseudo-likelihood, first proposed by Besag [14] and also termed composite
likelihood by Lindsay [15]. The motivation behind this class is to replace the likelihood by a
function that is easier to evaluate, and hence to maximize. The function in question is a product of
conditional or marginal densities. Thus, the main feature of a pseudo-likelihood function is that
it is composed of pieces of likelihoods that can be exploited to prove general results about the
consistency and asymptotic normality of pseudo-likelihood estimators.

Examples of PL estimation to multivariate correlated binary data were proposed by LeCessie
and Van Houwelingen [16], Kuk and Nott [17], Renard et al. [18], Cox and Reid [19] and Bellio
and Varin [20].

Considering the Rasch models with fixed effects, there are previous works based on the con-
ditional PL, in which the person parameters are eliminated. Zwinderman [21] has proposed a
pairwise parameter estimation in Rasch models, where the item parameters are estimated by the
PL of all the pairs of item responses given the latent trait. The obtained estimators are consistent
and similar in efficiency to the conditional maximum-likelihood (CML) and MML estimators.
For the Rasch model with ordered response categories, Andrich and Luo [22] proposed a pair-
wise conditional algorithm with the use of the principal components. This method of estimation
has two main advantageous properties: the consistency of the parameters and its adaptation for
missing data.

However, the PL estimation has not yet been studied in the framework of Rasch models with
random effects. We evaluated the potential of using the PL approach in the context of mixed
Rasch models and compared its performance with the MML approach which is more traditionally
used. We point out that this proposed marginal approach is different from the one proposed by
Andrich and Luo [22], which is based on the conditional PL. This approach is more interesting
for the complex models, which are faced with numerical problems. For example, in longitudinal
studies as proposed by Feddag and Bacci [23] or in GLMs with crossed random effects [20], the
PL reduces the high-dimensional integral involved in the marginal likelihood.

The specific outline of the paper is as follows. In Section 2, we present the model considered
with the logit link. In Section 3, we define the PL where the marginal pairwise probabilities
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Journal of Statistical Computation and Simulation 421

are detailed. In Section 4, we present some simulation results in which the pairwise approach
is compared with the MML, one obtained by the use of STATA Rasch test command [24] and
the Proc NLMIXED of the SAS software [25]. A simulation study is also presented for the
misspecification of the random effect. The emotional behaviour subscale of the Sickness impact
profile questionnaire [26] is also used. A discussion is finally presented in Section 5.

2. Rasch model

Let Y = {Yij , i = 1, . . . , N; j = 1, . . . , J } be a set of binary variable, where Yij is the response
of individual i to item j , coded by 0 and 1. Consider Ui, i = 1, . . . , n, the random effect (person
parameter) associated with the individuals. We denote by yij and ui the realizations of Yij and Ui ,
respectively.

The mixed Rasch model satisfies the following assumptions which are common to the IRT
models.

• Given the random effect ui , the variables Yi1, . . . , YiJ are independent with probability
given by

pij = Pr(Yij = 1 | ui, βj ) = exp[(ui − βj )]
1 + exp(ui − βj )

,

where βj is the item difficulty (fixed-effects parameter) associated with the item j .
• The linear predictor ηij is given by

ηij = g(Pr(Yij = 1 | ui, βj )) = ui − βj ,

where g is the link function, which could be the logit defined by logit(π) = ln(π/(1 − π)) or
the probit �−1, where � is the CDF of the normal distribution.

• The random effects ui, i = 1, . . . , N, are mutually independent and identically normally
distributed with mean 0 and variance σ 2.

We are interested in estimating the parameters θ = (β, σ ), where β = (β1, . . . , βJ ). The
marginal likelihood is given by

L(θ; y) =
N∏

i=1

∫
R

J∏
j=1

p
yij

ij (1 − pij )
1−yij ϕ(ui) dui, (1)

where ϕ(·) is the distribution of the normal variable with mean 0 and variance σ 2.
As an alternative to the MML or the GEE approach (see Feddag et al. [5]), we propose the PL

method. We give below the definition of this approach.

3. PL for the Rasch model

An alternative to the marginal likelihood is the pseudo-likelihood obtained by replacing the joint
likelihood by any product of the conditional or marginal densities. In this work, our attention is
restricted to products of marginal PLs. The basic contribution of the ith individual to the log PL
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422 M.-L. Feddag et al.

denoted by l2,i (, ) is given by

l2,i (θ; yi) =
J∑

j=1

∑
j	>j

log P(Yij = yij , Yij	 = yij	; θ), (2)

where

P(Yij = yij , Yij	 = yij	; θ) =
∫

P(Yij = yij | ui)P (Yij	 = yij	 | ui)ϕ(ui) dui.

For each individual i, we have J ∗ (J − 1)/2 pairs of marginal probability. These marginal–
pairwise probabilities are straightforward to calculate in terms of univariate and bivariate probit
for the multilevel probit models as suggested by Renard et al. [18].

For the logit version of the model, the marginal–pairwise probabilities are not straightforward.
These are derived from the expression of the logistic distribution function as a normal scale
mixture (see [27,28]), which is given by

F(t) = et

1 + et
�

k∑
i=1

pk,i�(tSk,i),

where (Sk,i , pk,i) are tabled for k = 1, . . . , 8 and � denotes the standardized normal distribution.
Then the two first marginal probabilities are approximated as follows:

P(Yij = 1; θ) =
k∑

l=1

pk,l�

⎛
⎜⎝ −βjSk,l√

1 + σ 2S2
k,l

⎞
⎟⎠ , (3)

P(Yij = 1, Yij	 = 1; θ) =
k∑

l=1

k∑
h=1

pk,lpk,h�2

⎛
⎜⎝ −βjSk,l√

1 + σ 2S2
k,l

,
−βj	Sk,h√
1 + σ 2S2

k,h

; ρ(k, h)

⎞
⎟⎠ , (4)

where the function �2(x, y; ρ) denotes the standardized bivariate normal distribution function
with correlation coefficient ρ, and ρ(k, h) is given by

ρ(k, h) = Sk,lSk,hσ
2√

1 + σ 2S2
k,l

√
1 + σ 2S2

k,h

.

The three marginal probabilities related to the combinations (1, 0), (0, 1), (0, 0) are
straightforward and are obtained using the above probabilities given by Equations (3) and (4).

The maximum pairwise-likelihood (MPL) estimators θ̂MPL = (β̂MPL, σ̂MPL) are obtained by
maximizing the whole log PL function given by

l2(θ; y) =
N∑

i=1

l2,i (θ; yi) =
N∑

i=1

J∑
j=1

∑
j	>j

log P(Yij = yij , Yij	 = yij	; θ). (5)

It follows from the standard theory of estimating equations (see [15,19,20]) that as the number
of individuals N increases, θ̂MPL is asymptotically normal with mean θ and asymptotic covariance
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Journal of Statistical Computation and Simulation 423

matrix H−1KH−1, where

H = E

(
−

N∑
i=1

∂2l2,i

∂θ∂θT

)
,

and

K = E

(
N∑

i=1

∂l2,i

∂θ

∂l2,i

∂θT

)
.

To obtain sample estimates of the standard errors (s.e.) of θ̂MPL, we estimate H and K by

Ĥ = −
N∑

i=1

J∑
j=1

∑
j	>j

∂ log P(yij , yij	 )

∂θ

∂ log P(yij , yij	 )

∂θT
,

K̂ =
N∑

i=1

∂l2,i (θ̂ )

∂θ

∂l2,i (θ̂ )

∂θT
.

(6)

4. Illustrations

The PL approach is illustrated by a simulation study to evaluate its performance and is compared
with the MML obtained by the use of the STATA software [29] (denoted by MMLStata) and by
Proc NLMIXED of the SAS software (denoted by MMLSAS). Thereafter, a simulation study is
presented to investigate how the misspecification of the distribution of the random effects will
affect the fixed-effects parameter. On the real data, it is further compared with the MML approach
obtained by the software RSP (see [30]) and with the GEE method (see [5]).

4.1. Simulation study

A simulation study was conducted to evaluate the performance of the PL estimator. This method
is compared with the MML approach with the use of the Stata raschtest command proposed by
Hardouin [24], where the integral involved in the ML given by Equation (1) is approximated by
Gauss–Hermite quadrature methods (denoted MMLStata) and with Proc NLMIXED for the Rasch
model of the SAS software [25] (denoted by MMLSAS).

The Stata software uses the Gauss–Hermite quadrature with 12 points and MMLSAS uses
the adaptive Gauss–Hermite quadrature, where the number of points is selected adaptively. The
calculation of the maximum for the three approaches is obtained by the direct maximization
algorithm: the simplex algorithm [31] for the PL, Newton–Raphson for MMLStata and quasi-
Newton for Proc NLMIXED.

The parameters considered for this study are as follows:

• Two sample sizes: N = 100, 300
• three different sets of item difficulty

(i) J = 2, β = (−1, 0.5)

(ii) J = 4, β = (−1, −0.2, 0.5, 1)

(iii) J = 9, β = (−3, −2, −1.5, −1, 0.5, 1, 1.5, 2, 3)

• σ = 0.5, 1, 2

The mean and the standard deviation (s.d.) of the estimates values obtained for each size based
on 500 replications are given in Tables 1–5.
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424 M.-L. Feddag et al.

Table 1. Parameter estimates for β = (−1, 0.5) and σ , and their s.d. in parenthesis for J = 2 for both
sizes, with the normal random effect.

N = 100 N = 300

True σ Approach β1 β2 σ β1 β2 σ

0.5 PL −1.060 0.529 0.546 −1.024 0.506 0.469
(0.267) (0.247) (0.455) (0.149) (0.128) (0.308)

MMLStata −1.060 0.530 0.548 −1.024 0.516 0.470
(0.268) (0.247) (0.454) (0.149) (0.129) (0.307)

MML		
SAS −1.001 0.535 0.746 −1.050 0.503 0.593

(0.267) (0.254) (0.350) (0.150) (0.136) (0.223)

1 PL −1.037 0.515 1.030 −1.006 0.500 1.004
(0.316) (0.268) (0.496) (0.176) (0.145) (0.266)

MMLStata −1.037 0.515 1.030 −1.006 0.501 1.004
(0.316) (0.269) (0.496) (0.177) (0.146) (0.266)

MML		
SAS −1.036 0.513 1.068 −1.002 0.499 0.993

(0.304) (0.265) (0.389) (0.173) (0.144) (0.242)

2 PL −1.050 0.544 2.124 −1.019 0.504 2.039
(0.370) (0.354) (0.629) (0.223) (0.215) (0.312)

MMLStata −1.051 0.545 2.127 −0.998 0.520 2.013
(0.373) (0.355) (0.634) (0.163) (0.155) (0.251)

MMLSAS −0.997 0.526 1.894 −0.997 0.491 1.849
(0.336) (0.330) (0.445) (0.173) (0.144) (0.235)

Table 2. Parameter estimates for β = (−1, −0.2, 0.5, 1) and σ , and their s.d. in parenthesis for J = 4
and N = 100, with the normal random effect.

True σ Approach β1 β2 β3 β4 σ

0.5 PL −1.031 −0.197 0.515 1.032 0.498
(0.248) (0.222) (0.219) (0.248) (0.268)

MMLStata −1.030 −0.197 0.515 1.031 0.449
(0.248) (0.222) (0.219) (0.248) (0.256)

MMLSAS −1.050 −0.204 0.527 1.050 0.524
(0.249) (0.215) (0.277) (0.255) (0.195)

1 PL −0.989 −0.182 0.516 0.999 1.007
(0.272) (0.255) (0.242) (0.272) (0.217)

MMLStata −1.002 −0.220 0.509 1.008 1.010
(0.276) (0.250) (0.256) (0.266) (0.227)

MMLSAS −1.002 −0.220 0.509 1.008 1.010
(0.277) (0.251) (0.257) (0.266) (0.227)

2 PL −1.014 −0.213 0.537 1.046 2.042
(0.350) (0.330) (0.342) (0.337) (0.321)

MMLStata −1.012 −0.212 0.539 1.046 2.040
(0.347) (0.328) (0.341) (0.336) (0.320)

MMLSAS −1.001 −0.213 0.537 1.049 2.017
(0.347) (0.328) (0.340) (0.336) (0.304)

Table 1 corresponding to J = 2 shows that the estimates given by the three approaches for the
size N = 100 are biased with considerable s.d. We note that for N = 300, the estimates are better:
the bias and the s.d. decrease. We point out that there is a difference between MMLSAS and the
two other approaches for σ = 0.5, 1 for both sizes. The large bias for the estimate of σ = 0.5
with MMLSAS is mainly caused by the rate of the convergent data sets, which is equal to 70%
for N = 100 and 77.2% for N = 300. The bias and the number of non-convergent replications
decrease considerably for σ = 1 for both sizes. In fact, we have 468 convergent replications with
N = 100 and 498 for N = 300. It could also deal with the quasi-Newton algorithm used in the
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Table 3. Parameter estimates for β = (−1, −0.2, 0.5, 1) and σ , and their s.d. in parenthesis
for J = 4 and N = 300, with the normal random effect.

True σ Approach β1 β2 β3 β4 σ

0.5 PL −1.014 −0.203 0.503 1.007 0.487
(0.136) (0.123) (0.131) (0.142) (0.187)

MMLStata −1.014 −0.203 0.503 1.006 0.495
(0.136) (0.123) (0.131) (0.142) (0.163)

MMLSAS −1.016 −0.205 0.504 1.008 0.506
(0.137) (0.124) (0.131) (0.143) (0.148)

1 PL −1.000 −0.204 0.497 1.003 1.006
(0.151) (0.134) (0.134) (0.159) (0.128)

MMLStata −1.000 −0.204 0.497 1.002 1.006
(0.150) (0.134) (0.134) (0.159) (0.128)

MMLSAS −1.000 −0.204 0.498 1.000 1.005
(0.153) (0.134) (0.134) (0.160) (0.128)

2 PL −1.003 −0.194 0.515 1.011 2.016
(0.212) (0.195) (0.194) (0.198) (0.178)

MMLStata −1.002 −0.195 0.516 1.011 2.014
(0.210) (0.196) (0.194) (0.198) (0.178)

MMLSAS −1.001 −0.195 0.514 1.009 1.995
(0.210) (0.195) (0.194) (0.198) (0.170)

Table 4. Parameter estimates for β = (−3, −2, −1.5, −1, 0.5, 1, 1.5, 2, 3) and σ , and their s.d. in parenthesis for
J = 9, N = 100, with the normal random effect.

True σ Approach β1 β2 β3 β4 β5 β6 β7 β8 β9 σ

0.5 PL −3.082 −2.033 −1.539 −1.004 0.520 1.030 1.553 2.085 3.109 0.465
(0.526) (0.321) (0.292) (0.257) (0.224) (0.236) (0.279) (0.337) (0.495) (0.235)

MMLStata −3.095 −2.074 −1.534 −1.015 0.516 1.014 1.494 2.035 3.225 0.490
(0.528) (0.370) (0.269) (0.251) (0.221) (0.231) (0.271) (0.337) (0.525) (0.182)

MMLSAS −3.100 −2.075 −1.536 −1.017 0.516 1.015 1.498 2.037 3.103 0.508
(0.482) (0.305) (0.292) (0.251) (0.269) (0.273) (0.301) (0.341) (0.498) (0.158)

1 PL −3.081 −2.030 −1.506 −0.999 0.525 1.015 1.528 2.056 3.096 0.997
(0.502) (0.310) (0.304) (0.251) (0.271) (0.277) (0.300) (0.345) (0.499) (0.148)

MMLStata −3.049 −1.984 −1.519 −1.017 0.509 1.018 1.519 2.037 3.177 1.003
(0.483) (0.308) (0.292) (0.248) (0.268) (0.272) (0.302) (0.341) (0.498) (0.160)

MMLSAS −3.045 −1.982 −1.520 −1.015 0.510 1.016 1.519 2.036 3.106 1.002
(0.482) (0.305) (0.292) (0.251) (0.269) (0.273) (0.301) (0.341) (0.498) (0.160)

2 PL −3.029 −2.024 −1.512 −0.999 0.542 1.037 1.561 2.058 3.088 2.033
(0.466) (0.392) (0.378) (0.337) (0.349) (0.357) (0.393) (0.375) (0.454) (0.243)

MMLStata −3.069 −2.004 −1.519 −0.990 0.506 1.013 1.536 2.036 3.058 2.035
(0.462) (0.370) (0.357) (0.334) (0.347) (0.363) (0.386) (0.372) (0.449) (0.240)

MMLSAS 3.068 −2.004 −1.519 −0.990 0.506 1.012 1.536 2.036 3.058 2.030
(0.461) (0.369) (0.356) (0.333) (0.347) (0.363) (0.386) (0.371) (0.448) (0.239)

optimization of this approach. For the last value of σ , there is no significant difference between
the three approaches.

Table 2 corresponding to J = 4 and N = 100 shows that the bias for all the parameter estimates
given by the three approaches are very small and close to 0. Their s.d. also are small and the s.d.
of the items parameter seem to increase with σ . The results are very similar for the two methods.
Regarding the bias and the s.d., these results show clearly that the PL approach is as good as the
MML one. In time, running the MML approach seems a bit faster than the PL one. This is caused
by the approximation in the normal scale mixture. With N = 300 as shown in Table 3, the results
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Table 5. Parameter estimates for β = (−3, −2, −1.5, −1, 0.5, 1, 1.5, 2, 3) and σ , and their s.d. in parenthesis for
J = 9, N = 300, with the normal random effect.

True σ Approach β1 β2 β3 β4 β5 β6 β7 β8 β9 σ

0.5 PL −3.041 −1.978 −1.507 −0.999 0.525 1.027 1.531 2.039 3.043 0.522
(0.301) (0.187) (0.161) (0.146) (0.131) (0.143) (0.158) (0.190) (0.294) (0.113)

MMLStata −3.028 −2.009 −1.514 −1.008 0.503 1.007 1.504 2.010 3.031 0.488
(0.256) (0.182) (0.158) (0.144) (0.123) (0.146) (0.161) (0.185) (0.290) (0.110)

MMLSAS −3.028 −2.009 −1.514 −1.008 0.503 1.007 1.504 2.011 3.031 0.489
(0.256) (0.182) (0.158) (0.144) (0.123) (0.146) (0.161) (0.185) (0.290) (0.105)

1 PL −3.020 −1.981 −1.493 −0.991 0.515 1.019 1.516 2.022 3.013 0.994
(0.261) (0.199) (0.172) (0.155) (0.146) (0.148) (0.164) (0.182) (0.277) (0.092)

MMLStata −2.997 −2.004 −1.502 −1.004 0.507 1.014 1.507 2.012 3.033 0.998
(0.257) (0.200) (0.162) (0.156) (0.145) (0.146) (0.166) (0.178) (0.272) (0.087)

MMLSAS −2.997 −2.004 −1.501 −1.004 0.507 1.013 1.507 2.011 3.033 0.997
(0.257) (0.200) (0.162) (0.156) (0.145) (0.146) (0.166) (0.178) (0.272) (0.087)

2 PL −3.028 −1.995 −1.491 −0.975 0.512 1.0180 1.526 2.009 3.044 2.003
(0.254) (0.217) (0.212) (0.209) (0.205) (0.199) (0.208) (0.206) (0.279) (0.132)

MMLStata −3.030 −2.009 −1.533 −1.014 0.497 1.011 1.500 2.004 3.015 2.015
(0.255) (0.214) (0.208) (0.209) (0.202) (0.197) (0.206) (0.219) (0.267) (0.131)

MMLSAS −3.030 −2.008 −1.532 −1.013 0.497 1.011 1.500 2.004 3.015 2.011
(0.254) (0.214) (0.208) (0.208) (0.202) (0.197) (0.206) (0.219) (0.267) (0.132)

are the same for the two methods and are better as expected: the bias is smaller (negligible) and
the s.d. decreases hence providing better precision of the estimates.

Finally, for the third set of item difficulty with J = 9, the results given in Tables 4 and 5 are
similar to those corresponding to J = 4. For N = 100 as shown in Table 4, the estimates of all
the parameters for the three approaches has a small bias with a considerable s.d. And as expected,
the bias and the s.d. decrease for all the estimates with the size N = 300 as shown in Table 5.

4.2. Sensitivity analysis: misspecification

Nehaus and Hauck [32] examined the performance of the mixed-effects logistic regression anal-
ysis, when the distribution of the random effects is misspecified. In their simulation study, they
have considered the Gamma and the t distribution. In our study, we consider only the Gamma
distribution for the random effects with scale parameter α and shape k = 1: U ∼ 
(1, α) with
density distribution given by f (x) = (1/α) exp(−(x/α)), x > 0, α > 0.

We denote the integrals involved in the marginal likelihood and PL by I 1
i (h1) and I 2

i (h2),
respectively, given by

I 1
i (h1) = 1

α

∫ +∞

0

exp (ui − βj )yij

1 + exp(ui − βj )
exp

(
−ui

α

)
dui

=
∫ +∞

0

exp (αui − βj )yij

1 + exp(αui − βj )
exp(−ui) dui,

I 2
i (h2) =

∫ +∞

0

exp (αui − βj )yij

1 + exp(αui − βj )

exp (αui − βj	)yij	

1 + exp(αui − βj	)
exp(−ui) dui.

The integrals defined above has the form for k = 1, 2, I k
i (hk) = ∫ +∞

0 hk(yi | ui, β, α) ×
exp(−ui) dui . Using the Laguerre quadrature, these integrals are approximated by

I k
i (m) =

m∑
l=1

wlhk(yi | zl, β, α),
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where wi and zi , i = 1, . . . , m, are Laguerre quadrature weights and nodes computed by the
Statmod package of the R software [33].

A simulation study based on 500 replications was conducted to compare the PL and MML
approaches on the Rasch model with the following parameters:

• Two sample sizes: N = 100, 300
• J = 4 items
• β = (−1, −0.2, 0.5, 1)

• α = 0.5, 1, 4

We give in Tables 6 and 7 the mean and the s.d. of the estimates for the size 100 and 300, where
the integrals are approximated by the Laguerre quadrature with 20 points.

For the size N = 100, as shown in Table 6, the bias and the s.d. for all the estimates given by
both approaches are not considerable, except the s.d. of the estimate of α for the value 4, which is
greater than 1. However, as expected the results for the size N = 300 given in Table 7, are better:
the bias is smaller and the s.d. decreases. With regard to the s.d.: for all the parameters, s.d. for
the MML approach are smaller than those for the PL method. That indicates as expected the loss
of efficiency with the PL approach. According to this results, we can say that the misspecification

Table 6. Parameter estimates for β = (−1, −0.2, 0.5, 1) and α, and their s.d. in parenthe-
sis for N = 100, with the Gamma random effect.

True α Approach β1 β2 β3 β4 α

0.5 PL −1.078 −0.251 0.460 0.953 0.465
(0.369) (0.340) (0.361) (0.399) (0.335)

MML −1.079 −0.253 0.458 0.951 0.462
(0.368) (0.338) (0.360) (0.398) (0.329)

1 PL −1.066 −0.237 0.461 0.974 0.991
(0.393) (0.361) (0.390) (0.413) (0.412)

MML −1.063 −0.234 0.465 0.978 0.996
(0.395) (0.359) (0.388) (0.413) (0.409)

4 PL −1.113 −0.229 0.484 1.011 4.167
(0.574) (0.492) (0.512) (0.554) (1.383)

MML −1.100 −0.214 0.501 1.032 4.22
(0.570) (0.483) (0.499) (0.543) (1.360)

Table 7. Parameter estimates for β = (−1, −0.2, 0.5, 1) and α, and their s.d. in parenthe-
sis for N = 300, with the Gamma random effect.

True α Approach β1 β2 β3 β4 α

0.5 PL −1.049 −0.238 0.465 0.960 0.462
(0.231) (0.228) (0.236) (0.249) (0.218)

MML −1.050 −0.239 0.464 0.959 0.461
(0.225) (0.219) (0.228) (0.242) (0.210)

1 PL −1.013 −0.199 0.501 0.997 1.006
(0.221) (0.202) (0.214) (0.232) (0.235)

MML −1.011 −0.197 0.503 0.999 1.008
(0.215) (0.193) (0.204) (0.220) (0.221)

4 PL −1.015 −0.205 0.499 1.007 4.037
(0.300) (0.274) (0.261) (0.293) (0.721)

MML −1.011 −0.201 0.503 1.012 4.050
(0.295) (0.271) (0.257) (0.284) (0.696)
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of the distribution of the random effects does not affect the item parameters neither in terms of
bias nor in terms of s.d.

Further simulations not reported in this study dealing with the centred gamma random effects
show that the estimates present a small bias for small variance component α and wrong estimates
for large α.

4.3. Real data

In this section, we illustrate the application of these two approaches to the analysis of real data from
a quality-of-life study. Further, we have used the MML approach (denoted by MMLem), which
uses the expectation–maximization (EM) algorithm, where the estimates are obtained by the
software program RSP (see [30]) and the GEE approach (see [5]). The sample is composed of 470
depressive patients who answered the French version of the emotional behaviour subscale of the
Sickness Impact Profile (SIP) questionnaire (see Bergner et al. [26] for the international version).
This questionnaire includes 12 dimensions (subscales), each one relating to a particular aspect of
quality-of-life. The items and their frequencies of responses are presented in Feddag et al. [5].

Table 8 presents the estimation of the difficulty parameter β and the variance components σ 2,
and their s.e. The standard error is estimated using the sandwich estimator for the GEE approach
and expression (6) for the PL one.

From Table 3, we note that the estimates obtained under the PL, MML, MMLem and GEE
approaches for the model are similar for both the item difficulty and the variance component
parameters. In fact, the large difference between the item difficulty parameters is very small and
the variance component estimates are equal. The s.d. of the estimates are very close for the four
approaches.

It is clear that for all the estimation methods, the most difficult item is number 4 (with the
largest estimation) and the easiest is item 7 (with the smallest estimation). The estimate of β3

is close to 0, which means that item 3 has been positively responded by approximately 50% of
individuals. This rate is confirmed in the table presented in Feddag et al. [5], where the positive
response to item 3 is equal to 48%. We point out that this estimated value does not affect the
measurement of the latent trait.

Instead of the residual analysis for the validation of the model which is not easy for this model,
we have used the R1m test proposed by Glas [34]. It compares the observed frequency of the
positive and negative response for each item in different groups of individuals as a function of
the scores. This test is available in Stata and RSP softwares. Under the hypothesis H0: ‘Good
adequacy to the model’, the statistic test following an asymptotic χ2 distribution with df = 55
are given as: 60.075 with p = 0.297 for the MMLem, 60.079 with p = 0.2969 for the MMLStata,
and 60.028 with p = 0.289 for the GEE. All the tests are not significant, which means that we do
not reject the adequacy.

Table 8. Parameter estimates and their s.e. in parenthesis for the emotional behaviour subscale of SIP data.

Approach β1 β2 β3 β4 β5 β6 β7 β8 β9 σ 2

PL −0.714 −0.274 0.097 2.034 −1.268 0.843 −1.414 −1.375 −0.608 0.672
(0.128) (0.109) (0.105) (0.177) (0.154) (0.122) (0.171) (0.166) (0.120) (0.172)

MMLem −0.683 −0.273 0.099 2.037 −1.270 0.846 −1.415 −1.375 −0.608 0.678
(0.099) (0.095) (0.095) (0.131) (0.107) (0.101) (0.111) (0.110) (0.098) (0.103)

MMLStata −0.712 −0.273 0.099 2.034 −1.268 0.844 −1.413 −1.373 −0.607 0.671
(0.110) (0.106) (0.105) (0.145) (0.120) (0.112) (0.124) (0.123) (0.109) (0.096)

GEE −0.702 −0.246 0.128 2.028 −1.221 0.863 −1.411 −1.371 −0.570 0.674
(0.108) (0.104) (0.103) (0.154) (0.120) (0.113) (0.123) (0.122) (0.107) (0.102)
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5. Discussion

This paper describes a PL approach to estimate simultaneously the item difficulty parameters and
the variance component of the mixed Rasch model with the logit link. This method which belongs
to the broad class of pseudo-likelihood is developed to solve the estimation problems of the Rasch
model, even if many have already been solved. In fact, the CML and the marginal maximum-
likelihood methods are available in many computer programs, for example, RSP [30] or the Rasch
test command [24]. A simulation study is conducted to analyse the sample performance of the PL
approach and to compare it with the MML one. In term of the bias and s.d., the results show that
the proposed method is as good as the MML approach. This work could be easily generalized to
cope with the Rasch model which includes continuous covariates [35]. However, the following
need further investigation: first, the extension of the approach to the model with polychotomous
items. Finally, it would be interesting to study the performance of this proposed approach to the
unbalanced data structure. For this case, the weighted PL as defined by Kuk and Nott [17] and
Joe and Lee [36] will be worthy to study its performance.

We have examined the performance of the two approaches when the distribution of the random
effects is misspecified. The simulation study shows that the item difficulty parameters are quite
robust to the considered misspecification.
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