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Abstract. Item Response Theory (IRT) is a set of models and methods allowing
for the analysis of binary or ordinal variables (items) that are influenced by a
latent variable or latent trait, that is, a variable that cannot be measured directly.
The theory was originally developed in educational assessment but has many other
applications in clinical research, ecology, psychiatry, and economics

The Mokken Scales have been described by Mokken (1971). They are composed
of items wich satisfy the three fundamental assumptions of Item Response Theory:
unidimensionality, monotonicity and Local Independence. They can be considered
as non parametric models in IRT. Traces of the items and Loevinger’s H coefficients
are particular useful indices for checking whether a set of items constitute a Mokken
scale.

However, these indices are not available in general statistical packages. We
introduce Stata modules to compute them. The options of these modules are
described and exemples of output are shown.

Keywords: Stata, Items traces, Mokken Scales, Item Response Theory, Loevinger
coefficients, Guttman errors

1 Introduction

Item Response Theory (IRT) [van der Linden and Hambleton (1997)] concerns models
and methods where the responses to the items (binary or ordinal variables) of a ques-
tionnaire are assumed to depend on non-measurable characteristics of the respondents
(latent traits). These models can be applied to measure such a latent variable (mea-
surement models), or to investigate influences of covariates on these latent variables.

Examples of latent traits are health status, quality of life, ability or content knowl-
edge in a specific field of study, or psychological traits such as anxiety, impulsivity and
depression.

Most of Item Response Models (IRM) are parametric: they model the probability
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2 Non parametric IRT

to respond at each response category of each item by a function depending on the
latent trait, typically considered as a set of fixed effects or as a random variable, and
of parameters characterizing the items. The Rasch model and the Birnbaum model
for dichotomous items, and the Partial Credit Model and the Rating Scale Model for
polytomous items are the most popular IRM and are already described for the Stata
software [Hardouin (2007), Zheng and Rabe-Hesketh (2007)].

Mokken (1971) defines a non parametric model to study the properties of a set of
items in the framework of IRT. Mokken calls this model the monotonely homogenous
model, but it is generally referred to as the Mokken model. This model is implemented
on a standalone package MSP [Molenaar et al. (2000)], and codes have been already
developped in Stata [Weesie (1999)], SAS [Hardouin (2002)], and R [van der Ark (2007)]
langages. We propose modules under Stata in order to study the fit of a set of items to
a Mokken model. These modules are more complete than the mokken module of Jeroen
Weesie that, for example, don’t offer the possibility to analyse polytomous items.

The main purpose of the Mokken model is to validate an ordinal measure of a
latent variable: for items that satisfy the criteria of the Mokken model, the sum of the
responses across items can be used to rank respondents on the latent trait [Hemker
et al. (1997), Sijtsma and Molenaar (2002)]. Compared to parametric IRT models, the
Mokken model necessitates few assumption regarding to the relationship between the
latent trait and the responses to the items, and so, generally allows keeping a more
important number of items. As a consequence, the precision of the individuals ordering
is higher [Sijtsma and Molenaar (2002)].

2 The Mokken scales

2.1 Notation

In the following, we use the following notation :

• Xj is the random variable (item) representing the responses to the jth item,
j = 1, ..., J ,

• Xnj is the random variable (item) representing the responses to the jth item,
j = 1, ..., J for the nth individual, and xnj is the realization of this variable,

• mj + 1 is the number of response categories of the jth item,

• The response category 0 implies the smallest level on the latent trait and is re-
ferred to as a negative response, whereas the mj non-zero response categories
(1, 2, ...,mj) increase with increasing level on the latent trait and are referred to
as positive responses

• M is the total number of possible positive responses across all items: M =∑J
j=1mj
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• Yjr is the random threshold dichotomous item taking the value 1 if xnj ≥ r and
0 otherwise. There are M such items (j = 1, ..., J and r = 1, ...,mj)

• P (.) refer to observed proportions

2.2 Monotonely Homogeneous Model of Mokken

The Mokken Scales are sets of items satisfying a Monotonely Homogeneous Model of
Mokken (MMHM) [Mokken (1997) Molenaar (1997), Sijtsma and Molenaar (2002)].
This kind of model is a non parametric IRM defined by the three fundamental assump-
tions of the Item Response Theory (IRT):

• unidimensionality (the response to the items are explained by a common latent
trait)

• local independence (conditionally to the latent trait, the responses to the items
are independent)

• monotonicity (the probability to have a response to an item greatear or equal to
a given value is a non decreasing function of the latent trait)

Unidimensionality implies that the responses to all the items are governed by a scalar
latent trait. A practical advantage of this assumption is the easiness to interpret the
results. For a questionnaire aiming at measuring several latent traits, such an analysis
must be realised for each unidimensional latent trait.

Local independence implies that all the relationships between the items are explained
by the latent trait [Sijtsma and Molenaar (2002)]. This assumption is strongly related
with the unidimensionality assumption, even if unidimensionality and local indepen-
dence do not imply one another [Sijtsma and Molenaar (2002)]. As a consequence, local
independence implies that there is not a strong redundance between the items.

Monotonicity is notably a fundamental assumption to allow validating the score as
an ordinal measure of the latent trait.

2.3 Traces of the items

The traces of items can be used to check the monotonicity assumption. We define the
score for each individual as the sum of its responses (Sn =

∑J
j=1Xnj). This score is

assumed to represent a ordinal measure of the latent trait. The trace of a dichotomous
item represents the proportion of positive responses (P (Xj = 1)) as a function of the
score. If the monotonicity assumption is satisfied, the traces increase. This means the
higher the latent trait, the more frequent the positive responses. In Education sciences,
if we wish to measure a given ability, this means that a good student will have more
easily correct responses to the items. In Health sciences, if we search to measure a
dysfunctioning through the presence of symptoms, this means that a patient having a



4 Non parametric IRT

high level of dysfunctioning will display more symptoms. An exemple of trace is given
in figure 1.
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Figure 1: Trace of a dichotomous item as a function of the score.

The score and the proportion of positive responses to each item are generally posi-
tively correlated, because the score is a function of all the items. This phenomenon can
be strong, notably if there are few items in the questionnaire. In order to avoid it, the
rest-score (computed as the score to all the other items) is more generally used.

For polytomous items, we represent the proportion of responses to each response
category (P (Xj = r)) as a function of the score or of the rest-score (an example is given
in figure 2).
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Figure 2: Traces of a polytomous item as a function of the score.

Unfortunately, these traces are difficult to interpret, because an individual with a
moderate score will preferably respond to medium response categories, and an individual
with high scores will respond to high response categories, so the traces corresponding to
each response category does not increase. Cumulative traces represent the proportions
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P (Yjr = 1) = P (Xj ≥ r) as a function of the score or of the rest-score. If the mono-
tonicity assumption is respected, these traces increase. An example is given in figure
3.
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Figure 3: Cumulative traces of a polytomous item as a function of the score.

2.4 The Guttman errors

Dichotomic case

The difficulty of an item can be defined as its proportion of negative responses. The
Guttman errors [Guttman (1944)] for a pair of dichotomous items are the number of
individuals which have a positive response to the more difficult item and a negative
response to the easiest item. In Education sciences, this reprensents the number of
individuals that have correctly responded to a given item, but uncorrectly responded
to an easier item. In health sciences, this represents the number of individuals which
present a given symptom, but which do not present a more common symptom.

We define the two-way tables of frequency counts between the items j and k as

Item j
0 1

Item k 0 ajk bjk ajk + bjk
1 cjk djk cjk + djk

ajk + cjk bjk + djk Njk

Njk is the number of individuals with non-missing responses to the items j and k.

An item j is easier than the item k if P (Xj = 1) > P (Xk = 1) that is to say if
bjk+djk

Njk
>

cjk+djk

Njk
(equivalently, if bjk > cjk), and the number of Guttman errors ejk in
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this case is ejk = Njk.P (Xj = 0, Xk = 1) = cjk. More generally, if we ignore the easier
item between j and k:

ejk = Njk.min {P (Xj = 0, Xk = 1);P (Xj = 1;Xk = 0)} = min {bjk; cjk} (1)

e
(0)
jk is the number of Guttman errors under the assumption of independence of the

responses to the two items:

e
(0)
jk = Njk.min {P (Xj = 0).P (Xk = 1);P (Xj = 1).P (Xk = 0)} =

(ajk + ejk) (ejk + djk)

Njk

(2)

Polytomous case

The Guttman errors between two given response categories r and s of the pair of poly-
tomous items j and k are defined as:

ej(r)k(s) = Njk.min {P (Xj ≥ r,Xk < s);P (Xj < r,Xk ≥ s)}
= Njk.min {P (Yjr = 1, Yks = 0);P (Yjr = 0, Yks = 1)} (3)

The number of Guttman errors between the two items is:

ejk =

mj∑
r=1

mk∑
s=1

ej(r)k(s) (4)

Note that if mj = mk = 1 (dichotomous case), this formula is equivalent to equation
1

Under the assumption of independence between the responses to these two items,
we have:

e
(0)
j(r)k(s) = Njk.P (Xj < r)P (Xk ≥ s) = Njk.P (Yjr = 0)P (Yks = 1) (5)

if P (Xj ≥ r) > P (Xk ≥ s) and

e
(0)
jk =

mj∑
r=1

mk∑
s=1

e
(0)
j(r)k(s) (6)

2.5 The Loevinger’s H coefficients

Loevinger (1948) proposes three indices which can be defined as a function of the
Guttman errors between the items.
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The Loevinger’s H coefficient between two items

Hjk is the Loevinger’s H coefficient between the items j and k:

Hjk = 1− ejk

e
(0)
jk

(7)

We have Hjk ≤ 1 with Hjk = 1 if and only if there is no Guttman error between the
items j and k. If this coefficient is close of 1, there are few Guttamn errors, and so the
two items probably measure the same latent trait. An indice close to 0 signifies that
the response to the two items are independent, and therefore that might reveal the fact
that the two items probably do not measure the same latent trait. A significantly neg-
ative value to this indice is not expected, and can be a flag that an (or several) item(s)
has(have) been incorrectly coded, or is(are) incorrectly understood by the respondants.

We can test H0: Hjk = 0 (against H1: Hjk > 0). Under the null assumption, the
statistic

Z =
Cov(Xj , Xk)√
V ar(Xj)V ar(Xk)

Njk−1

= ρjk
√
Njk − 1 (8)

follows a standardized normal distribution, where ρjk is the correlation coefficient be-
tween items j and k.

The Loevinger’s H coefficient measuring the consistency of an item within a scale

Let S be a set of items (scale) and j an item which belongs to this scale (j ∈ S). HS
j

is the Loevinger’s H coefficient measuring the consistency of the item j with a scale S.

HS
j = 1−

eSj

e
S(0)
j

= 1−
∑

k∈S, k 6=j ejk∑
k∈S, k 6=j e

(0)
jk

(9)

If the scale S is a good scale (i.e. if it satisfies a MMHM for example), this indice is
close to 1 if the item j has a good consistency with the scale S and close to 0 if it has
a bad consistency with this scale.

It is possible to test H0: HS
j = 0 (against H1: HS

j > 0). Under the null assumption,
the statistic

Z =

∑
k∈S,k 6=j Cov(Xj , Xk)√∑
k∈S,k 6=j

V ar(Xj)V ar(Xk)
Njk−1

(10)

follows a standardized normal distribution.
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The Loevinger’s H coefficient of scalability

If S is a set of items, we can compute the Loevinger’s H coefficient of scalability of this
scale.

HS = 1− eS

eS(0)
= 1−

∑
j∈S

∑
k∈S, k>j ejk∑

j∈S
∑

k∈S, k>j e
(0)
jk

(11)

We have HS ≥ minj∈S H
S
j . If HS is near of 1, the scale S has good scale properties,

and if HS is near of 0, it has bad scale properties.

It is possible to test H0: HS = 0 (against H1: HS > 0). Under the null assumption,
the statistic

Z =

∑
j∈S

∑
k∈S,k 6=j Cov(Xj , Xk)√∑

j∈S
∑

k∈S,k 6=j
V ar(Xj)V ar(Xk)

Njk−1

(12)

follows a standardized normal distribution.

We note that in the MSP software [Molenaar et al. (2000)], the Z statistic defined in
equation (8), (10) and (12) are approximated by dividing the variances by Njk instead
of by Njk − 1.

2.6 The fit of a Mokken scale to a dataset

Link between the Loevinger’s H coefficient and the Mokken scales

Mokken (1971) shows that if a scale S is a a Mokken scale, then HS > 0. But the
reciprocity is not true. He proposes the following classification:

• if HS < 0.3, the scale S has poor scalability properties,

• if 0.3 ≤ HS < 0.4, the scale S is ”weak”,

• if 0.4 ≤ HS < 0.5, the scale S is ”medium”,

• if 0.5 ≤ HS , the scale S is ”strong”.

So Mokken (1971) suggests using the Loevinger’s H coefficient to build scales which
satisfy a Mokken scale. He suggests that there is a threshold c > 0.3 such as, if HS >
c, then the scale S satisfies a Mokken scale. This idea is used by Mokken (1971)
and adapted by Hemker et al. (1995) to propose the ”Mokken Scale Procedure” or
”Automated Item Seclection Procedure” (AISP) [Sijtsma and Molenaar (2002)].

More, the fit to the Mokel scale is satisfying if HS
j > c and Hjk > 0 whatever j and

k two given items of the scale S.
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Check of the monotonicity assumption

The monotonicity assumption can be checked by a visual inspection of the traces. Nev-
ertheless, the MSP program Molenaar et al. (2000) propose indexes to evaluate it. The
idea of these indexes is to allow the traces to have small decreases.

To check for the monotonicity assumption linked to the jth item (j = 1...J), the
population is cut in Gj groups (based on the rest-score of the individuals computed as
the sum of the items on all the others items). Each group is indexed by g = 1...Gj

(g = 1 represents the individuals with the lower rest-scores, and g = Gj the individuals
with the larger rest-scores).

Let Zj the random variable representing the groups corresponding to the jth item.
It is expected that ∀j = 1, ..., J and r = 1, ...,mj , we have P (Yjr = 1|Zj = g) ≥
P (Yjr = 1|Zj = g′) with g > g′.

Gj(Gj−1)
2 of such comparisons can be realized

for the item j (noted #acj for ”active comparisons”). In fact, only important vio-
lations of the expected results are retained, and a threshold minvi is used to define
an important violation P (Yjr = 1|Zj = g′) − P (Yjr = 1|Zj = g) > minvi. Con-
sequently, it is possible for each item to count the number of important violations
(#vij) and to compute the value of the maximal violation (maxvij) and the sum
of the important violations (sumj). Last, it is possible to test the null assumptions
H0 : P (Yjr = 1|Zj = g) ≥ P (Yjr = 1|Zj = g′) against the alternative assumptions
H1 : P (Yjr = 1|Zj = g) < P (Yjr = 1|Zj = g′) ∀j, r, g, g′ with g > g′.

Let the table

Item Yjr
0 1

Group g’ a b
g c d

Under the null assumption, the statistics

z =
2
(√

(a+ 1)(d+ 1)−
√
bc
)

√
a+ b+ c+ d− 1

(13)

follows a standardized normal distribution. The maximal value of z for the item j is
denoted zmaxj and the number of significant z values is denoted #zsigj . The criterion
used to check the monotonicity assumption linked to the item j is defined by Molenaar
et al. (2000) as:

Critj = 50(0.30−Hj) +
√

#vij + 100
#vij
#acj

+ 100maxvij + 10
√
sumj + 1000

sumj

#acj

+5zmaxj + 10
√

#zsigj + 100
#zsigj
#acj

(14)
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It is generally considered that a criterion less than 40 signifies that the violations re-
ported can be ascribed to sampling variation. A criterion exceeding 80 casts serious
doubts on the respect of the monotonicity assumption for this item. If the criterion
is between 40 and 80, further considerations must be analysed to conclude [Molenaar
et al. (2000)].

2.7 The Doubly Monotonely Homogeneous Model of Mokken - DMHMM

The P++ and P−− matrices

The ”Doubly” Monotonely Homogeneous Model of Mokken (DMHMM) is a model where
the probabilities P (Xj ≥ l) ∀j, l produce the same ranking of items for all persons
[Mokken and Lewis (1982)]. In practice, this means that the questionnaire is inter-
preted similarly for all the individuals, whatever their level on the latent trait.

The P++ matrix is the matrices (M ×M) where each element corresponds to the
probability P (Xj ≥ r,Xk ≥ s) = P (Yjr = 1, Yks = 1). The rows and the columns of
this matrix are ordered from the most difficult threshold item Yjr ∀j, r to the easiest one.

The P- - matrix is the matrices (M ×M) where each element corresponds to the
probability P (Yjr = 0, Yks = 0). The rows and the columns of this matrix are ordon-
nated from the most difficult threshold item Yjr ∀j, r to the easiest one.

A set of item satisfies the doubly monotone assumption if this set satisfy a MMHM
and if the elements of the P++ matrix are increasing in each row, and the elements of
the P- - matrix are decreasing in each row.

We can represent each column of these matrices in a graph. On the X-axis, the re-
sponse categories are ordered in the same order than in the matrices, and on the Y-axis,
the probabilities contained in the matrices are represented. The obtained curves must
be non decreasing for the P++ matrix, and non increasing for the P−− matrix.

Check of the double monotonicity assumption via the analysis of the P matrices

Let three threshold items Yjr, Yks and Ylt with j 6= k 6= l. Under the DMHMM,
if P (Yks = 1) < P (Ylt = 1) then it is expected that P (Yks = 1, Yjr = 1) < P (Ylt =
1, Yjr = 1). In the set of possible threshold items, we count the number of important vio-
lations of this principle among all the possible combinaison of three items. An important
violation represents a case where P (Yks = 1, Yjr = 1) − P (Ylt = 1, Yjr = 1) > minvi
with minvi a fixed threshold. For each item j, j = 1, ...J , we count the number of
comparisons (#acj), the number of important violations (#vij), the value of maximal
important violation (maxvij), the sum of the important violations (sumvij). It is pos-
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sible to test the null assumption H0 : P (Yks = 1, Yjr = 1) ≤ P (Ylt = 1, Yjr = 1)
against the alternative assumption H1 : P (Yks = 1, Yjr = 1) > P (Ylt = 1, Yjr = 1)
with a McNemar test.

Let K be the random variable representing the number of individuals in the sample
who satisfy Yjr = 1, Yks = 0 and Ylt = 1. Let N the random variable representing
the number of individuals in the sample satisfying Yjr = 1, Yks = 0 and Ylt = 1, or
Yjr = 1, Yks = 1 and Ylt = 0. k and n are the realizations of these two random variables.
Molenaar et al. (2000) defines the statistics:

z =
√

2k + 2 + b−
√

2n− 2k + b with b =
(2k + 1− n)2 − 10n

12n
(15)

Under the null hypothesis, z follows a standardized normal distribution. It is possi-
ble and to count the number of significant tests (#zsig) and the maximal value of the
statistics z (zmax).

A criterion can be computed for each item as the one used in formula 14 using the
same thresholds for checking the double monotonicity assumption.

2.8 Contribution of each individual to the Guttman errors and H
coefficients and person-fit

From the preeceding formulas, the number of Guttman errors induced by each individual
can be computed. Let en this number for the nth individual. The number of expected
Guttman errors under the assumption of independence of the responses to the item is

equal to e
(0)
n = eS(0)

N . An individual with en > e
(0)
n is very likely to be an individual

whose responses are not influenced by the latent variable, and if en is very high, the
individual can be consider as an outlier.

By analogy with the Loevinger coefficient, we can compute the Hn coefficient in the
following way Hn = 1− en

e
(0)
n

. A large negative value indicates an outlier, and a positive

value is expected (note that Hn ≤ 1).

It is interesting to note that, when there is no missing value

HS =

∑N
n=1Hn

N
(16)

Emons (2008) defines the normalized number of Guttman errors for polytomous
items (Gp

N ) as

Gp
Nn =

en
emax,n

(17)

where emax,n is the maximal number of Guttman errors obtained with a score equal to
Sn. This index can be interpreted as:
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• 0 ≤ Gp
Nn ≤ 1

• if Gp
Nn is close to 0, the individual n has few Guttman errors

• if Gp
Nn is close to 1, the individual n has full of Guttman errors

The advantages of the Gp
Nn indexes are to be bounded between 0 and 1 whatever

the number of items and response categories and to be adjusted to the observed score of
each individual. Nevertheless, there is no consensual definition of a threshold to identify
a no misfit and a misfited individual.

2.9 The Mokken Scale Procedure (MSP) or Automated Item Selec-
tion Procedure (AISP)

Algorithm

The Mokken Scale Procedure proposed by Hemker et al. (1995) allows selecting items
from a bank of items wich satisfy a Mokken Scale. This procedure puts on the Mokken’s
definition of a scale [Mokken (1971)]: Hjk > 0, HS

j > c and HS > c whatever j and k
two given items of the scale S.

At the initial step, a kernel of items is chosen (at least two items: we can select for
example the pair of items having the maximal significant Hjk coefficient). This kernel
corresponds to the scale S0.

At each step n ≥ 1, we integrate in the scale S(n−1) the item j if this item satisfies:

• j /∈ S(n−1)

• S(n) ≡ S(n−1)⋃ j
• j = arg maxk/∈S(n−1) HS∗(n)

with S∗(n) ≡ S(n−1)⋃ k
• HS(n) ≥ c

• HS(n)

j ≥ c

• HS(n)

j significantely positive

• Hjk significantely positive, ∀k ∈ S(n−1)

The MSP is stopped as soon as none item satisfies all these conditions, but it is
possible to construct a second scale with the items unselected in the first scale, and so
on until there is no more item remaining.
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The threshold c is subjectively defined by the user: the authors recommand to fix
c ≥ 0.3: as c gets larger, the obtained scale will become stronger but it will be more
difficult to include an item in a scale.

The Bonferroni corrections

At the initial step, in the general case, we compare all the possible Hjk coefficients to 0

using a test: there are J(J−1)
2 such tests. At each following step l, we compare J (l) Hj

coefficients to 0 where J (l) is the number of unselected items at the beginning of the
step l.

Bonferroni corrections are used to take into account this number of tests and to keep
a global level of significance equal to α [Molenaar et al. (2000)]. At the initial step, we

divide α by J(J−1)
2 to obtain the level of significance, and at each step l, we divide α

by J(J−1)
2 +

∑l
m=1 J

(m).

When the initial kernel is composed of only one item, only J − 1 tests are realized

at the first step, and the coefficient J(J−1)
2 is replaced by J − 1. When the initial kernel

is composed of at least two items, this coefficient is replaced by 1.

Tip to improve the time of computing

At each step, the items k (unselected in the current scale) which satisfies Hjk < 0 with
an item j already selected in the current scale are automatically excluded.

3 Stata modules

In this section, we presents three Stata modules which allow computing indices and
realizing algorithms presented in this paper. These modules have intensively been tested
and compared to the output of the MSP software with several datasets. Small (and
generally irrelevant) differences with the MSP software can persist, and can be explained
by different ways of approximation of the values.

3.1 The traces module

Syntax of the traces module

The syntax of the traces module is (version 3.2 is described here):

traces varlist
[
, score restscore ci test cumulative logistic

repfile(string) scorefile(string) restscorefile(string)

logisticfile(string) replace nodraw nodrawcomb onlyone(varname)
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thrhesholds(string)
]

Options of the traces module

score displays the graphical representations of the traces of the items as a function
of the total score. This is the default if none of the options score, restscore, or
logistic are specified.

restscore displays the graphical representations of the traces of the items as a function
of the rest-score (total score whithout the item).

ci displays the 95% confidence intervals of the traces.

test tests the null hypothesis that the slope of a linear model for the trace line is zero

cumulative displays cumulative traces for polytomous items instead of classical traces.

logistic displays the graphical representation of the logitic traces of the items as a
function of the score: each trace is the result of a logistic model explaining the
response to the item by the score (and a constant). This kind of trace is possible
only for dichotomous items. All the logistic traces are represented in the same graph.

repfile defines the directory where the files should be saved.

scorefiles defines the generic name of the files containing the graphical representations
of the traces as a function of the score. The name will be followed by the name of each
item and by the .gph extension. If this option is not indicated, the corresponding
graphs will not be saved.

restscorefiles defines the generic name of the files containing the graphical repre-
sentations of the traces as a function of the rest-score. The name will be followed
by the name of each item and by the .gph extension. If this option is not indicated,
the corresponding graphs will not be saved.

logisticfile(string) is the name of the file containing the graphical representations of
the logistic traces. This name will be followed by the .gph extension. If this option
is not indicated, the corresponding graph will not be saved.

nodraw does not display the graphs by items.

nodrawcomb does not display the combined graphs by items.

replace replaces graphical files when they already exist.

onlyone displays only the trace of a given item.

thresholds groups the individuals as a function of the (rest-)score. This string contains
the maximal values of the (rest-)score in each group.
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3.2 The loevH module

Syntax of the loevH module

The syntax of the loevH module is (version 7.1 is described here):

loevH varlist
[
, pairwise pair ppp pmm noadjust generror(string) replace

graph monotonicity(string) nipmatrix(string)
]

The Stata module loevH requires the modules traces, anaoption and gengroup.

Options of the loevH module

pairwise. By default, loevH omits all the individuals with at least one missing value
on the items of the scale. The pairwise option omits, for each pair of items, only
the individuals with a missing value on these two items.

pair displays the values of the Loevinger’s H coefficients and the associated statistics
for each pair of items.

ppp displays the P++ matrix (and the associated graph with graph).

pmm displays the P- - matrix (and the associated graph with graph).

noadjust allows avoiding the adjustement by N − 1 for the test statistics (as in the
MSP software).

generror defines the prefix of five new variables. The first one (only the prefix) will
contain the number of Guttman errors attached to each individual, the second one
(the prefix followed by 0) the number of Guttman errors attached to each indi-
vidual under the assumption of independance of the item, the third one (the prefix
followed by H) the quantity 1 minus the ratio between the two preeceding values,
the fourth one (the prefix followed by max) the maximal possible Guttman errors
corresponding to the score of the individual, and the last one (the prefix followed
by GPN) the normalized number of Guttman errors. With the graph option, an
histogram of the number of Guttman errors by individual is drawn.

replace allows replacing the variables defined by the generror option.

graph displays graphs with the ppp, pmm and generror options. This option is auto-
matically disabled if the number of possible scores is greater than 20.

monotonicity displays outputs to check for the monotonicity assumption. It is possible
to define in this option the value of minvi (only the violations of the monotonicity
assumption greater than this value are considered as important, by default the used
value is 0.03), the minimal size of each group of patients (minsize, by default this
value is equal to N/10 if N > 500, to N/5 if 250 < N ≤ 500, and to N/3 if
N ≤ 250 with a minimum fixed to 50), the significance level (siglevel fixed by
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default to 0.05). The details option allows printing more detailed outputs for
polytomous items. It is possible to use all the default values by indicating a ∗ in the
monotonicity option.

nipmatrix display indexes in order to check the non-intersection (Doubly Monotone
Mokken Model). It is possible to define in this option the value of minvi (only the
violations of the non-intersection assumption greater than this value are considered
as important, by default the used value is 0.03), and the significance level (siglevel
fixed by default to 0.05). It is possible to use all the default values by indicating a
∗ in the nipmatrix option.

Output of the loevH module

Scalars
r(Obs) (matrix) number of individuals

used to compute each coefficient
Hjk (if the pairwise option is
not used, the number of individ-
uals are the same for each pair of
items)

r(eGuttjk) matrix of the numbers of ob-
served Guttman errors associ-
ated to each items pair

r(eGuttjk0) matrix of the numbers of theori-
cal Guttman errors associated to
each items pair

r(eGuttj) vector of the total numbers of
observed Guttman errors associ-
ated to the scale

r(eGuttj0) vector of the total numbers of
theorical Guttman errors associ-
ated to the scale

r(eGutt) total number of observed
Guttman errors associated to
the scale

r(eGutt0) total number of theorical
Guttman errors associated to
the scale

r(loevHjk) matrix of the Loevinger’s H co-
efficient for each pair of items

r(loevHj) vector of the Loevinger’s H coef-
ficient to measure the integration
of each item in the scale

r(loevH) value of the Loevinger’s H coef-
ficient of scalability

r(zHjk) matrix of the Z-statistics of the
tests concerning the Loevinger’s
H coefficients for each pair of
items

r(zHj) vector of the Z-statistics of the
tests concerning the Loevinger’s
H coefficients of each item in the
scale

r(zH) Z-statistics of the tests concern-
ing the Loevinger’s H coefficients
of scalability

r(pvalHjk) matrix of the p-values of the
tests concerning the Loevinger’s
H coefficients for each pair of
items

r(pvalHj) vector of the p-values of the tests
concerning the Loevinger’s H co-
efficients of each item in the scale

r(pvalH) p-values of the tests concerning
the Loevinger’s H coefficients of
scalability

r(P11) P++ matrix r(P00) P- - matrix

3.3 The msp module

The syntax of the msp module is (version 6.6 is described here):

msp varlist
[
, c(#) kernel(#) p(#) minvalue(#) pairwise nobon notest

nodetails anadjust
]
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The Stata module msp requires the module loevH.

Options of the msp module

c defines the value of the threshold c. The default is c(0.3).

kernel defines the #th first items as the kernel of the first sub-scale. The default is 0.

p defines the level of significance of the tests. The default is p(0.05).

minvalue defines the minimum value of a Hjk coefficient between two items j and k of
a same scale. The default is minvalue(0).

pairwise uses the pairwise option to compute the Loevinger’s H coefficients.

nobon avoids the Bonferroni’s corrections of the level of significance.

notest does not test the nullity of the Loevinger’s H coefficient.

nodetails does not display the detail of the algorithm.

noadjust allows avoiding the adjustement by N − 1 for the test statistics (as in the
MSP software).

Output of the msp module

Scalars
r(dim) number of created scales r(H#) value of the Loevinger’s H coef-

ficient of scalability for the #th
scale

r(nbitems#) number of selected items in the
#th scale

r(scale#) list of the items selected in the
#th scale (in the order of selec-
tion)

r(lastitem) if only one item is remaining, the
name of this item

r(selection) a vector which contains, for each
item, the number of the scale
where this item is selected

3.4 Output

We present an example of outputs of these programs with items of the french adaptation
of the Way of Coping Checklist (WCC) questionnaire Cousson et al. (1996). This
questionnaire measures the coping strategies and contains 27 items which compose 3
dimensions: problem-focussed coping, emotional coping and seeking social support. The
sample is composed of 100 women with a recent diagnostic of breast cancer.

Output of the module loevH

The loevH module allows obtaining the values of the Loevinger’s H coefficients. Since
the sample was small, it was impossible to obtain several groups of individuals with
50 individuals or more. As a consequence, for the monotonicity option, the minsize
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has been fixed to 30. We studied the emotional dimension composed of 9 items (with 4
response categories of responses per item). The rate of missing data varied from 2% to
15% following the items and only 69 women have a complete pattern of responses, so
the pairwise option has been prefered to keep a maximum of information.

. loevH item2 item5 item8 item11 item14 item17 item20 item23 item26,pairw
> monot(minsize(30)) nip(*)

Observed Expected Number
Difficulty Guttman Guttman Loevinger H0: Hj<=0 of NS

Item Obs P(Xj=0) errors errors H coeff z-stat. p-value Hjk

item2 92 0.2935 453 732.03 0.38117 7.4874 0.00000 1
item5 92 0.3261 395 751.61 0.47446 9.5492 0.00000 1
item8 90 0.3667 515 788.65 0.34699 7.6200 0.00000 4
item11 97 0.5670 519 862.50 0.39826 9.2705 0.00000 1
item14 98 0.6327 532 752.63 0.29314 6.8306 0.00000 3
item17 94 0.7660 299 487.40 0.38653 7.4598 0.00000 1
item20 95 0.6632 494 711.53 0.30573 6.7867 0.00000 1
item23 85 0.5412 525 729.72 0.28054 6.1752 0.00000 2
item26 89 0.6517 502 710.59 0.29355 6.3643 0.00000 2

Scale 100 2117 3263.33 0.35128 15.9008 0.00000

Summary per item for check of monotonicity
Minvi=0.030 Minsize= 30 Alpha=0.050

Items #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig Crit

item2 3 0 -4 graph
item5 3 0 -9 graph
item8 3 0 -2 graph
item11 3 0 -5 graph
item14 3 0 0 graph
item17 2 0 -4 graph
item20 3 0 -0 graph
item23 3 0 1 graph
item26 3 0 0 graph

Total 52 0 0.0000 0.0000 0.0000 0.0000 0.0000 0

Summary per item for check of non-Intersection via Pmatrix
Minvi=0.030 Alpha=0.050

Items #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig Crit

item2 1512 49 0.0324 0.0990 2.2005 0.0015 1.6844 1 51
item5 1512 85 0.0562 0.1239 4.1743 0.0028 2.9280 6 81
item8 1512 90 0.0595 0.1105 4.2927 0.0028 2.5221 4 81
item11 1512 120 0.0794 0.1105 5.4429 0.0036 2.5221 6 89
item14 1512 88 0.0582 0.1081 4.1701 0.0028 2.3015 7 88
item17 1512 52 0.0344 0.0865 2.4122 0.0016 2.0662 2 57
item20 1512 52 0.0344 0.0830 2.2127 0.0015 2.3015 1 57
item23 1512 90 0.0595 0.0990 4.2123 0.0028 1.8742 3 77
item26 1512 94 0.0622 0.1239 4.3258 0.0029 2.9280 4 87

This scale has a correct scalability (HS = 0.35). Three items (14, 23, 26) display a
borderline value for the HS

j coefficient (0.28 or 0.29). The monotonicity assumptionis
not rejected (no important violation of this assumption, and the criteria are satisfied).
This is not the case for the non-intersection of the Pmatrices curves: several criteria are
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greater than 80 (items 5, 8 , 11, 14, 26) showing important violation of this assumption.
The model followed by this data is therefore more a MHMM than a DMHMM. As
the indices suggest that the MMHM holds, the score computed by summing codes
associated to the 9 items can be considered as a correct ordinal measure of the studied
latent trait (the emotional coping) and the three fundamental assumptions of the IRT
(unidimensionality, local independence and monotonicity) can be considered as verified.

Output of the module msp

The msp module runs the Mokken Scale Procedure.

. msp item2 item5 item8 item11 item14 item17 item20 item23 item26,pairw

Scale: 1

Significance level: 0.001389
The two first items selected in the scale 1 are item2 and item11 (Hjk=0.6245)
Significance level: 0.001163
The item item17 is selected in the scale 1 Hj=0.5304 H=0.5748
Significance level: 0.001020
The item item5 is selected in the scale 1 Hj=0.5464 H=0.5588
Significance level: 0.000926
The item item8 is selected in the scale 1 Hj=0.4435 H=0.5073
Significance level: 0.000862
The item item20 is selected in the scale 1 Hj=0.3835 H=0.4684
Significance level: 0.000820
None new item can be selected in the scale 1 because all the Hj are lesser than
.3 or none new item has all the related Hjk coefficients significantly greater
than 0.

Observed Expected Number
Difficulty Guttman Guttman Loevinger H0: Hj<=0 of NS

Item Obs P(Xj=0) errors errors H coeff z-stat. p-value Hjk

item20 95 0.6632 265 429.87 0.38354 6.3672 0.00000 0
item8 90 0.3667 286 508.92 0.43802 7.7902 0.00000 1
item5 92 0.3261 225 496.03 0.54640 9.1467 0.00000 0
item17 94 0.7660 168 291.14 0.42296 5.9433 0.00000 1
item2 92 0.2935 261 485.41 0.46231 7.5382 0.00000 0
item11 97 0.5670 249 523.75 0.52458 9.3138 0.00000 0

Scale 100 727 1367.56 0.46839 13.4151 0.00000

Scale: 2

Significance level: 0.016667
The two first items selected in the scale 2 are item23 and item26 (Hjk=0.4391)
Significance level: 0.012500
The item item14 is selected in the scale 2 Hj=0.4276 H=0.4313
Significance level: 0.012500
There is no more items remaining.

Observed Expected Number
Difficulty Guttman Guttman Loevinger H0: Hj<=0 of NS

Item Obs P(Xj=0) errors errors H coeff z-stat. p-value Hjk

item14 98 0.6327 115 200.89 0.42756 5.4739 0.00000 0
item23 85 0.5412 109 193.44 0.43651 5.2885 0.00000 0
item26 89 0.6517 114 200.00 0.43000 5.4109 0.00000 0
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Scale 100 169 297.17 0.43129 6.5985 0.00000

The AISP procedure creates two groups of items.

On the first hand, the items 2 ”Wish that the situation would go away or somehow
be over with”, 5 ”Wish that I can change what is happening or how I feel”, 8 ”Accept
it, since nothing can be done”, 11 ”Hope a miracle will happen”, 17 ”I daydream or
imagine a better time or place than the one I am in” and 20 ”Try to forget the whole
thing” concerns items which measures the negation or the wish to forget the reason of
the stress. For this set, the scalability coefficient is good (0.47), and there is no problem
concerning the monotonicity assumption (maximal criterion per item of -4), nor inter-
section of the curves (maximal criterion per item of 53). This set seems to satisfy a
DMHMM and is composed of 6 of the 11 items composing the ”Wishful thinking” and
”Detachment” dimensions proposed by Folkman and Lazarus (1985) in an analysis of
the WCC among a sample of students.

On the other hand, the items 14 ”Realize I brought the problem on myself”, 23
”Make a promise to myself that things will be different next time” and 26 ”Criticize or
lecture myself” concerns items which measures the culpability. For this set, the scal-
ability coefficient is good (0.43), and there is no problem concerning the monotonicity
assumption (maximal criterion per item of -6), nor intersection of the curves (maxi-
mal criterion per item of -6). This set seems to satisfy a DMHMM and is composed of
the three items of the ”Self blame” dimension proposed by Folkman and Lazarus (1985).

We can note that, if we fix the two first items selected in the second set of items as a
kernel in the AISP (with the syntax msp item23 item26 item2 item5 item8 item11

item14 item17 item20,pairw kernel(2)), all the items are selected in the same set
of items. This process is recommanded by Hemker et al. (1995) to confirm or reject
the structure found by the AISP. In our case, it is possible to choose between a set of
items satisfying a MHMM and two sets of items satisfying each a DMHMM. Since the
three sets of items are interpretable (emotional coping for the set of items satisfying
MHMM, negation and culpability for the two others sets of items), there is no problem
to choose freely following the whished precision of the measured concepts. In the optic
of the validation of the questionnaire, it is preferable to chose the set of items containing
all the items satisfying the emotional coping, which is closer to the former questionnaire.
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