
SELECTION OF ITEMS FITTING A RASCH MODEL

ABSTRACT

In a preceeding paper, the authors propose a procedure basedon the Multidimen-
sional Marginaly Sufficient Rasch Model (MMSRM) to select items in scales with
good measurement properties. The main drawback of this procedure is the time of
computing, because the used models are Generalized Linear Mixed Models (GLLM),
a kind of models which the parameters are long to estimate with classical methods
in the generalist statistical software. In this paper, we propose a fast way to realize
this procedure. A Stata module is proposed to perform the twoversions of this pro-
cedure. Simulations allows comparing this procedure to twoothers ones, MSP and
HCA/CCPROX.

Key Words : Quality of life, Multidimensional IRT, Rasch model, Items selection,
Raschfit.

0.1. Introduction

Item Response Models (IRM) [FIS 95] [LIN 97] are used models in educational
testing, psychology or health related quality of life. These models consider that a la-
tent trait (latent variable) explains the responses to the items. The latent trait generally
is multidimensional, but full of IRM generally consider only a unidimensional latent
trait. More, the relations between the items and the component of the latent trait often
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are unknown : they are supposed by subjective advices of experts and the work of the
statistician consists to validate them with psychometric models. The statistician gene-
rally is not integrated in the exploratory analysis to definethese links and to help the
experts to define links which are coherent with psychometricproperties.

Some procedures (Factor analysis, MSP, HCA/CCPROX) allow the links between
the items and the latent traits to be defined, but none of them is based on the direct
fit of an Item Response Models to the data. The authors propose[HAR 04] a pro-
cedure which allows defining these links and obtaining scales with a good fit of a
given Item Response Model : the Multidimensional MarginalySufficient Rasch Mo-
del (MMSRM) which is a multidimensional counterpart of the most famous IRM, the
Rasch model.

But the fit of a multidimensional IRM, evaluated by the likelihood of the model,
is a long process to run if we consider the model as a Multidimensional Generalized
Linear Mixed Model (GLMM) : in this paper, a fast way to realize this procedure is
proposed. It allows obtaining correct results in a reasonable time.

0.2. Notations and assumptions

0.2.1. Notations

Let Θq the qth component of the multidimensional latent trait characterizing the
individuals withq = 1, ..., Q andθnq the realization of this latent trait for thenth
individual, n = 1, ..., N . θn is the vector of the values on theQ latent traits for the
nth individual(θn1, ..., θnq, ..., θnQ).

Thejth item is characterized by a vector of parametersνj , j = 1, ..., J [FIS 95].
The response to this item is represented by the random variable Xj wich the realiza-
tion for thenth individual is notedxnj .

We consider only dichotomous items, and for each of them, themore favourable
answer is named "positive response" and is coded1 and the other answer is named
"negative response" and is coded0.

The Item Response Function (IRF) of thejth item is the probability that a given
individualn positively respond to this item as a function of the value of the latent trait
for thenth individualθn.
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0.2.2. Fundamental assumptions of the Item Response Theory (IRT)

The IRT is the set of IRM which verify three fundamental assumptions [LIN 97] :

– Fixed dimension : the dimensionQ of the latent trait is known. For the majority
of IRM, the unidimensionality (Q = 1) is required.

– Local independency : the responses to the items are independent conditionnally
to the latent trait.

– Monotonicity : the IRF are non-decreasing functions of each component of the
latent trait.

0.3. The Rasch model and the multidimensional marginally sufficient Rasch mo-
del

0.3.1. The Rasch model

The Rasch model [RAS 60] is an unidimensional IRM : the responses to the items
are assumed to depend of an unidimensional latent trait :θn is a scalar. More, each
itemj, j = 1, ..., J , is defined by only one parameterδj : this parameter is interpreted
as the difficulty of thejth item, because the more its value is high, the more the
probability to positively respond to the itemj is small. The IRF of thejth item is :

P (Xnj = xnj/θn; δj) =
exp (xnj (θn − δj))

1 + exp (θn − δj)
[1]

The latent trait can be considered as a set of fixed parametersor as a random va-
riable. In the fixed effects Rasch model, the classical maximum likelihood technic
makes the estimations not consistent.

The Rasch model is a famous IRM because this model has a specific property :
the scoreSn =

∑J
j=1 Xnj is a sufficient statistic of the latent trait, that is to say that

all the available information about the latent trait is contained in the score [AND 77].
Consequently, if the latent trait is considered as a set of fixed parameters, the condi-
tional maximum likelihood can be used : the likelihood is maximized conditionnally
to the score computed as the number of positive responses to all the items for each
individual. These estimations are consistent [AND 70].

If the latent trait is considered as a random variable, its distribution functionG(θ)
is assumed (generally as a centered gaussian distribution of varianceσ2 [FIS 95]), and
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consistent estimations of the items parametersδj and of the parameters of this distri-
bution (generally, only the varianceσ2) can be obtained by maximizing the marginal
likelihood :

LM (σ2, δ/x) =
N
∏

n=1

∫ J
∏

j=1

P (Xnj = xnj/θ; δj)G(θ/σ2)dθ [2]

with δ = (δ1, ..., δj , ..., δJ ).

0.3.2. The multidimensional marginally sufficient Rasch model

Hardouin and Mesbah [HAR 04] propose a extention of the Raschmodel to the
multidimensional case. In this model, the responses to the items are governed by a
multidimensional latent trait (of dimensionQ), but the response to a given itemj is
governed by only one component of the latent trait indexedqj . Consequently, margi-
nally to the others items and to the others components of the latent trait, all the items
governed by the same component of the latent trait (that is tosay each scale) fit a
classical Rasch model. This model can be relied to the between items response model
defined by Adams and al. [ADA 97].

In this model, the response function of thejth item is :

P (Xnj = xnj/θn; δj) =
exp

(

xnj

(

θnqj
− δj

))

1 + exp
(

θnqj
− δj

) = P (Xnj = xnj/θnqj
; δj)[3]

As a consequence, the scoreSnq =
∑J

j=1/qj=q xnj computed with only the items
associated to theqth component of the latent traitΘq is a sufficient statistic ofΘq.

This model is named a Multidimensional Marginaly SufficientRasch Model (MM-
SRM) for this reason. By considering the latent trait as a multivariate random variable
(distributed by a multivariated centered gaussian distribution with a unknown cova-
riance matrixΣ), the items parameters (and the elements of theΣ matrix) can be
consistently estimated by marginal maximum likelihood, bymaximizing :

LM1(Σ, δ/x) =
N
∏

n=1

∫ J
∏

j=1

P (Xnj = xnj/θqj
; δj)G(θ/Σ)dθ [4]
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This method of estimation is a long process with classical software as SAS, Splus
or Stata, because these integrals must be approximated at each step of the algorithm.

We can gain full of time by estimating independently the items parameters and the
elements of theΣ matrix : like each marginal scale verifies a Rasch model, the items
parameters can be estimated scale by scale, by the maximum marginal likelihood me-
thod. These estimations are notedδ̂j , j = 1, ..., J .

Then, the elements of the covariance matrixΣ can be estimated by assuming the
items parameters as known parameters and by maximizing the new quantity :

LM2(Σ/x, δ̂) =

N
∏

n=1

∫ J
∏

j=1

P (Xnj = xnj/θqj
; δ̂j)G(θ/Σ)dθ [5]

which is an approximation ofLM1(Σ, δ/x).

0.4. The Raschfit procedure

In [HAR 04], a procedure of items selection in Rasch scales based on the fit of the
items to a MMSRM is proposed. This procedure is referenced inthe present paper by
"Raschfit".

At a stepk of this procedure, we assume at each step to have a set ofJ (k) items,
named kernel, which verifies a Rasch model, and we search if a Rasch model fits the
data by adding a new item (indexed byj = 0) to the kernel. We compare the fit of
a Rasch model, and the fit of the MMSRM with the items of the kernel relied to one
component of the latent trait and the new item relied to another component.

At the first step of the Raschfit procedure, the initial kernelis composed of two or
more items chosen by the user, or determined by a specific analysis. The order in wich
the others items will be introduced in the procedure can be freely determined but can
be have importance in the final result. The authors propose touse the Mokken Scale
Procedure (MSP) [HEM 95] to select the initial kernel and to order the others items

The fit of the models is valuated by the Akaike Information Criterion (AIC) [HOI 97]
with :

AICm = −2lm + 2Km [6]
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Wherelm is the value of the log-likelihood andKm the number of parameters of
the modelm. At thekth step of the procedure, we haveK

(k)
1 = J (k) +2 for the Rasch

model andK(k)
2 = J (k) + 4 for the MMSRM.

The new item is selected at thekth step of the procedure in the scale ifAIC
(k)
1 ≤

AIC
(k)
2 . The procedure is stopped when there is no more item remaining.

This procedure is a very long process, because the log-likelihood of a MMSRM is
long to approximate. The estimation can be implemented withthe GLLAMM program
of Stata, the NLMIXED procedure of SAS or the NLME library of Splus. This three
programs approximate the multivariate integrals with (adaptive) gaussian quadratures
and necessitate a great amount of computer ressources.

0.5. A fast version of Raschfit

We propose here an adaptation of the Raschfit procedure, referenced as "Raschfit-
Fast". This adaptation is based on the fixed effects Rasch model.

0.5.1. Estimation of the parameters under the fixed effects Rasch model

In the Rasch model, by considering the latent trait as a set offixed parameters
(θn, n = 1, ..., N ), the individuals values of the latent traitθn, n = 1, ..., N cannot
be constistently estimated by classical technic [FIS 95].

Indeed, the Rasch model verifies the specific property of sufficiency of the un-
weighted score on the latent trait : this property signifies that, conditionnally to the
scoresn =

∑J
j=1 xnj , the likelihood of thenth individual is independent of the latent

trait θn.

LCn(θn, δ/xn, sn) = LCn(δ/xn, sn) [7]

In maximizing the quantity

LC(δ/x, s) =
N
∏

n=1

LCn(δ/xn, sn), [8]
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we obtain a consistent estimation of theδ vector of parameters.

The weighted maximum likelihood technics [FIS 95] allows consistently estima-
ting theθs, s = 0, ..., J parameters by maximizing :

LWC(θs/δ̂,x) =
N
∏

n=1

Ln(θsn
/δ̂,xn)g(θsn

) [9]

whereθs = (θ0, ..., θs, ..., θJ )′ and

g(x) =

J
∏

j=1

exp(x − δ̂j)
(

1 + exp(x − δ̂j)
)2 [10]

0.5.2. Principle of Raschfit-Fast

The principle of Raschfit-Fast is globally the same than for Raschfit : at each step,
a kernel fits a Rasch model, and a new item is added to this kernel if the new scale
has a good fit to a Rasch model. The mixed Rasch model is replaced by a fixed effects
Rasch model, and the MMSRM is replaced by a specific model built from the follo-
wing consideration : if the set of items composed of the itemsof the kernel and the
new item does not follow a Rasch model, we consider than the responses to the new
item are independent of the latent trait. The likelihood associated to these responses
is estimated by a logistic form (as in the Rasch model) but with only an unknow pa-
rameter characterizing the item in the linear composant (which can be interpreted as a
difficulty parameter).

At a stepk of the algorithm, let0 the index of the new item, theJk items of the
kernel are indexed from1 to Jk.

0.5.3. A model where the new item is explained by the same latent trait than the
kernel

If the new item is explained by the same latent trait than the kernel, a Rasch model
can be used. At thekth step of the algorithm, the scoreS(k∗)

n is computed with theJk
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items of the kernel and the new item.

The likelihood used to compute the Akaike Information Criterion is in this case
similar to this one presented in the equation 9, and the number of parameters is
K

(k)
1 = 2Jk + 3.

0.5.4. A model where the new item is not explained by the same latent trait than the
kernel

The likelihood of the responses to theJk items of the kernel of thenth individual
is similar to this one presented in the equation 9 and the corresponding log-likelihood
is notedl(k)

kernel at thekth step of the algorithm.

The likelihood of the response to the new item of thenth individual is estimated
by :

P (Xn0 = xn0/δ0) =
exp [xn0 (−δ0)]

1 + exp (−δ0)
[11]

The estimation of theδ0 parameter can be obtained by maximizing :

lC0(δ0/x0) = log

N
∏

n=1

P (Xn0 = xn0/δ0) [12]

We easily obtain̂δ0 = − log
(

t0
N−t0

)

wheret0 =
∑N

n=1 xn0.

The log-likelihood of the model at thekth step of the algorithm is valuated by

l
(k)
2 = l

(k)
kernel + lC0(δ0/x0) [13]

The number of parameters is in this caseK
(k)
2 = 2Jk + 2.
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0.5.5. Selection of the new item in the scale

The new item0 is selected in the scale at the end of the step ifAIC
(k)
1 ≤ AIC

(k)
2 .

0.6. A small set of simulations in order to compare Raschfit and Raschfit-Fast

0.6.1. Parameters of the simulation study

To test the Raschfit procedure, Hardouin and Mesbah [HAR 04] have realized si-
mulations based on a design proposed in [ABS 04]. Simulated data are unidimensional
or bidimensional, and 2000 individuals are used. The parameters used in the simula-
tions are :

– the model used to simulate the data,

– the structure of the data,

– the correlation between the two latent traits,

– the number of items in each dimension,

– the dicriminating power of the items of each dimension.

0.6.1.1. Models

The model used to simulate the data is a multidimensional counterpart of the Five
Parameters Accelerating Model (5-PAM) which considers fiveparameters for each
item : the difficulty (δ∗j ), the discriminating power (α∗

j ), the random response to the
item (γlow

j ), the maximal probability to respond to the item (γup
j ), and an accelerating

coefficient (ξj) which is a coefficient of dissymmetry of the IRF. The IRF of this model
is :

P (Xnj = xnj/θn; δ∗j ,α∗
j , γ

low
j , γup

j , ξj)

= γlow
j +

(

γup
j − γlow

j

)

[

exp
(

1.7xnj(
∑

Q

q=1
(α∗

jqθnq)−δ∗j )
)

1+exp
(

1.7
(
∑

Q

q=1
(α∗

jq
θnq)−δ∗

j

))

]ξj [14]

with 0 ≤ γlow
j < γup

j ≤ 1, α∗
jq > 0 andξj > 0. We name this model a M5-PAM (for

Multidimensional 5-PAM). If we haveγlow
j = 0, γup

j = 1 andξj = 1 ∀j, the model
is a multidimensional couterpart of the 2 parameters logistic model (noted M2-PLM).

The parameters(α∗
jq, δj∗) are computed in order to obtain Item Characteristics

Curves with the same maximal slope (1.7αjq

4 ) and the same localisation of this maxi-

mal slope (δj

αjq
) on theqth component of the latent trait whatever a given value for



10 SELECTION OF ITEMS FITTING A RASCH MODEL

(αjq, δj).

In the simulations, we consider a bidimensional latent trait, soQ = 2. The com-
ponent of the latent which influence the more the response to the itemj is indexed by
qj and the other one byqj .

The responses of a given itemj can be influenced only byθqj
. In this case,

αjqj
= 0. This case corresponds to a simple structure (SS) [J. 99].

But the responses of a given itemj can be mainly influenced by one main com-
ponent of the latent trait and weakly by the other (0 < αjqj

<< αjq). This case
corresponds to an approximate simple structure (ASS) [J. 99]. In the simulations, we
useαjqj

= 0.2.

We consider four cases described in the table 1.

Caseαjqj
Structure(γlow

j , γ
up
j ) ξj Model

I 0 SS (0,1) 1 MMSRM
II 0.2 ASS (0,1) 1 M2-PLM
III 0 SS (0.1,0.9) 2 M5-PAM
IV 0.2 ASS (0.1,0.9) 2 M5-PAM

Tableau 1.Values of the parameters used in the simulations

We note that in the case I and II, we haveα∗
jq = αjq, ∀q andδ∗j = δj .

0.6.1.2. Simulation of the multidimensional latent trait

The two latent traits are simulated by a centered standardized multinormal distri-
bution. The correlation coefficient between the two latent traits is notedρ and can take
six different values :0.0, 0.2, 0.4, 0.6, 0.8 and1.0.

0.6.1.3. The number of items in the two dimensions

We use two different sizes for each dimension. These values correspond to a mean
value of the number of items by dimension in Quality of Life questionnaires (7 items)
and to a big value of this number (14). Three designs are used :7 items in each dimen-
sion, or7 items in one dimension and14 in the other. The used values of the difficulty
parameters in the simulations are chosen in the 2-PLM and in each dimensionq as the
l/(Jq + 1), l = 1, ..., Jq percentiles of a standardized centered gaussian distribution.
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0.6.1.4. The discriminating powers of the items

The same valueαq is used for the discriminating power of all the items mainly
relied the same dimensionq . Three different values are used in the simulations for the
parametersαq, q = 1, ..., Q : a low value (0.4), a medium value (0.7) and a high value
(1.7). The six designs crossing two by two this three values are used.

0.6.1.5. Description of the four main cases

Data simulated in the case I are equivalent to data simulatedwith a MMSRM. In
this case, we can write the IRF of thejth item :

P (Xnj = xnj/θn; δj ,αj) =
exp

(

1.7xnj(αjqj
θnqj

− δj)
)

1 + exp
(

1.7
(

αjqj
θnqj

− δj

))

=
exp

(

xnj(θ̃nqj
− δ̃j)

)

1 + exp
(

θ̃nqj
− δ̃j

) [15]

with θ̃nqj
= 1.7αjqj

θnqj
andδ̃j = 1.7δj . This expression is equivalent to this one

present in the equation (3).θ̃n = (θ̃n1, θ̃n2)
′ is in this case distributed as a centered

multinormal distribution with a covariance matrix

Σ̃ =

(

(1.7α1)
2 1.72α1α2ρ

1.72α1α2ρ (1.7α2)
2

)

[16]

This case is interesting when we search to study the results of the procedure when
the model underlying the data is a MMSRM, that is to say the model used by the pro-
cedure.

The case II allows knowning the behavior of the procedures when the IRF of the
items have the same general form than in the MMSRM but when thestructure is less
particular (the SS is a very rare structure in practice, so the ASS is a likelier structure
of real data). These cases allow seeing if the introduction of a minor latent trait stron-
gly affects in practice the notion of sufficiency of the scoreon the (main) latent trait.

The cases III and IV allow studying the results of the procedure when the IRF are
different of the supposed IRF. The results are more difficultto analyse because the
underlying notion of sufficiency of the score on the latent trait is not verified in this
model. These simulations considers the cases where the unidimensionality is the main
link between the items. latent trait.
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0.6.1.6. The number of simulations

By crossing these five factors, we obtain360 designs. Each of them is simulated
one time.

0.6.2. Results and time of computing

0.6.2.1. Tested procedures

The simulated data are been treated by four procedures :

– the Raschfit procedure,

– the Raschfit-Fast procedure,

– a Mokken scale procedure (MSP) [HEM 95] which builds scalesof items which
verify the properties of the IRT unless searching the fit to a parametric IRM,

– a Hierarchical Cluster Analysis on conditional measures of proximity (HCACC-
PROX), wich clusters together the items having the greater proximity (based on the
conditional covariance between the items).

0.6.2.2. MSP

MSP is a procedure described in [HEM 95]. This procedure search to build scales
which verifies a Mokken scale, that is to say a scale verifyingthe fundamental as-
sumptions of the IRT (unidimensionality, local independency, and monotonicity).

The Mokken scale are non parametric models, and necessitateto fix a threshold
(c) as the minimum acceptable value for the used indices (The Loevinger H indices
[LOE 48]). The authors of this procedure suggest to choosec ≥ 0.3, this minimum
value is used in the simulations.

0.6.2.3. HCACCPROX

HCACCPROX is defined in [ROU 98]. This method is based on the same methods
than the classical HCA : a proximity matrix is defined and a each step, the two closer
elements among all these ones defined at the preeceding step are clustered together,
until obtaining only one cluster. The authors defined, in thefield of the IRT, three
specific proximity matrix based a weighted sum of the covariance, correlation or odds-
ration computed for each value of the score. They shows with simulations that the use
of this method gives better results than classical measuresof proximity with IRT items.
The DETECT indice is used to chose the number of clusters of items (The partition
which presents the minimal value for this indice is chosen).In the simulations, the
distance based on the conditional covariances between the items and the WPGMA
method of aggregation are used.
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Number Time of computing in seconds
Procedure of items Average Standard error Minimum Maximum

Raschfit 7 ;7 18190 3384 13740 39540
7 ;14 38829 9291 23460 64800

Raschfit-Fast 7 ;7 320 110 120 720
14 ;7 1216 530 240 2640

MSP 7 ;7 20 5 5 187
14 ;7 89 18 8 382

HCA/CCPROX 7 ;7 89 5 79 123
14 ;7 353 81 287 905

Tableau 2.Average, minimum and maximum time of computing for one
simulation for each procedure

0.6.2.4. Clustering of the results

Let a major error of classement defined as two items which havebeen simulated
from two disctinct dimensions and which are classified together. When we simulate
two dimensions with a perfect correlation (ρ = 1 : unidimensional case), a major er-
ror of classement is a classement which allows findind the original dimension of each
item.

Each result is affected to a class among these five ones :

– Class 1 : The true classification of the items is found,

– Class 2 : Less than 2 items (for dimensions withJq = 7) or 3 items (for dimen-
sions withJq = 14) are not classified in the two main dimensions,

– Class 3 : The true classification of the items is not found butthere is no major
error of classement,

– Class 4 : There is one or several major error(s) of classement,

– Class 5 : Unspecified results : at least 2 items (for dimensions withJq = 7) or 3
items (for dimensions withJq = 14) are unselected by the procedure [Only for MSP].

0.6.2.5. Time of computing

The average, the minimum and the maximum times of computing for each proce-
dure are presented in the table 2. The values depends of the number of used items. The
used computer is cadenced at 950MHz with 512Mo of RAM.

The table 2 shows that Raschfit, in its original version, is a very long process and
is unadapted in practice (in average, 5 hours to run the procedure with seven items
in each dimension and 11 hours to run it with seven and fourteen items in the two
dimensions). Compared to Raschfit, Raschfit- Fast reduces the time of computing by
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a factor 60 for 7 items in each dimension, and by a factor 30 for7 and 14 items in the
two dimensions.

0.6.2.6. Results of the data simulated by a MMSRM (case I)

The results are influenced by two main factors : the correlation coefficient between
the two components of the latent traits and the fact that the discriminating powers of
the items in the two dimensions are equal (α1 = α2) or not.

Concerning the correlation coefficient between the two component of the latent
traits, we consider 3 main cases :

– the correlation is low (ρ ≤ 0.4),

– the correlation is high (0.6 ≤ ρ ≤ 0.8),

– the two simulated latent traits are counfound (ρ = 1).

The table 3 presents the results of the four tested procedures in all these cases.

Equal discriminating power Different discriminating power
among the two dimensions among the two dimensions

Procedure Results ρ ≤ 0.4 0.6 ≤ ρ ≤ 0.8 ρ = 1.0 ρ ≤ 0.4 0.6 ≤ ρ ≤ 0.8 ρ = 1.0

Number of simulations 18 12 6 27 18 9

Raschfit good 14(78%) 7(58%) 4(67%)24(89%) 13(72%) 0
bad 3(17%) 5(42%) 0 2(7%) 4(22%) 7(78%)

Raschfit good 15(83%) 0 6(100%)26(96%) 15(83%) 1(11%)
Fast bad 3(17%) 12(100%) 0 1(4%) 3(17%) 3(33%)
HCA/CCPROX good 15(83%) 8(67%) 6(100%)26(96%) 10(56%) 0

bad 1(6%) 3(25%) 0 1(4%) 2(11%) 1(11%)
MSP good 12(67%) 3(25%) 4(67%) 8(30%) 0 4(44%)
(c = 0.3) bad 0 6(50%) 0 0 9(50%) 0

unspecified 6(33%) 2(17%) 2(33%)18(67%) 9(50%) 5(56%)

Tableau 3.Results with data simulated by a MMSRM

When the discriminating powers used in the simulations are the same in the two
sets of items, results are good when the correlation coefficient is low (ρ ≤ 0.4),
and continue to be correct when it is medium (0.6 ≤ ρ ≤ 0.8) for Raschfit and
HCA/CCPROX.

When the latent trait underlying the two sets of the items is the same (ρ = 1), the
results are good for Raschfit and Raschfit-Fast if the two setsof items have the same
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Procedure Results ρ ≤ 0.4 0.6 ≤ ρ ≤ 0.8 ρ = 1.0

Number of simulations 45 30 15

Raschfit good 27(60%) 12(40%) 4(27%)
bad 8(18%) 18(60%) 2(13%)

Raschfit-Fast good 24(53%) 8(27%) 8(53%)
bad 21(47%) 22(73%) 1(7%)

HCA/CCPROX good 29(64%) 9(30%) 0
bad 9(20%) 10(33%) 0

MSP good 6(13%) 2(7%) 2(13%)
(c = 0.3) bad 0 2(7%) 0

unspecified39(87%) 26(87%) 8(53%)

Tableau 4.Results with data simulated by a Multidimensional 2PLM

discriminating powers (and so, if the global set of items canbe considered as a only
one Rasch scale), and if the two sets of items have different discriminating powers,
these two procedure tend to consider that the latent trait can be measured with two
Rasch scales. HCA/CCPROX seems to be sensible to the discriminating powers of the
items, but produces few errors. MSP have success rates in these cases similar to these
ones obtained with a lower value of the correlation coefficient.

0.6.2.7. Results of the data simulated by a multidimensional 2PLM (case II)

When the data are simulated by a multidimensional 2PLM with anASS (see table
4), Raschfit, Raschfit-Fast and HCA/CCPROX have similar rateof success when the
correlation coefficient is different to1 : a high rate (53% to 64%) when the correlation
is low, and a medium rate (27% to 40%) when the correlation is high). MSP have poor
rate of success and an important rate of unspecified results (87%).

When the two components of the latent traits are counfounded,Raschfit-Fast is the
procedure which produces the best rate of success (53%), butHCA/CCPROX has the
advantage to not produce bad results.

0.6.2.8. Results of the data simulated by a multidimensional 5PAM (Cases III and IV)

The table 5 presents the results obtained with data simulated by a multidimensio-
nal 5PAM.

When data are simulated from a Multidimensional 5PAM, results are comparable
to these ones obtained with the multidimensional 2-PLM withmore important rate
of bad results for Raschfit, Raschfit-Fast and HCA/CCPROX. The rate of unspecified
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Procedure Results ρ ≤ 0.4 0.6 ≤ ρ ≤ 0.8 ρ = 1.0

Number of simulations 90 60 30

Raschfit good 49(54%) 23(38%) 13(43%)
bad 35(39%) 35(58%) 6(20%)

Raschfit-Fast good 59(66%) 6(10%) 12(40%)
bad 31(34%) 54(90%) 0

HCA/CCPROX good 45(50%) 17(28%) 0
bad 24(27%) 28(47%) 2(7%)

MSP good 16(18%) 0 17(57%)
(c = 0.3) bad 27(30%) 45(75%) 0

unspecified44(49%) 14(23%) 4(13%)

Tableau 5.Results with data simulated by a Multidimensional 5PAM

results for MSP is lower but unspecified results are "becomed" bad results. The rela-
tively good results obtained with Raschfit and a model very different of the MMSRM
can be imputed to the fact that, in the simulations, the parameters are fixed in order
to obtain Items Characteritics Curves (ICC) with the same location of the maximum
slope and the same value of the maximum slop, so this model cannot enought far of
the MMSRM to create a large disturbance of the algorithm.

0.7. A large set of simulations in order to compare Raschfit-Fast, MSP and HCA/CCPROX

Raschtest-Fast seems to give similar results to Raschfit, but the slowness of Ra-
schfit avoids to realize a large set of simulations with this procedure. In this part, we
propose a simulations study with a large set of simulations,to compare Raschfit-Fast,
MSP and HCA/CCPROX. The simulated cases concerns unidimensional scale (are the
procedure able to detect a unidimensional scale ? - case A) and perturbance create by
the add of a perturbant item (are the procedures able to detect a bad item ? - cases B-E).

0.7.1. Parameters of the simulations

We simulate one or bi-dimensional data.

We define four cases indexed from A to E. In each case, the correlation between
the two components of the latent trait is fixed (ρ = 0.0 for B, ρ = 0.2 for C, ρ = 0.4
for D, ρ = 0.6 for E). The case A is the unidimensional case : none item is relied to
the second component of the latent trait.
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In each case, 7 items are simulated relatively to the first component of the latent
trait, and one item is simulated relatively to the second component (except in the case
A where there is none such item). The aim is to determine if theprocedures can detect
one bad item in a set of items (in the case A, the aim is to see if the procedures detects
bad items in a set of unidimensional items).

We define too four scenarii, numbered I to IV, following the average of the discri-
minating power of the items :µαI

= .5, µαII
= 1, µαIII

= 2, andµαIV
= 3. The

discriminating power of each item is randomly defined among anormal distribution
of standard error.2.

The difficulty of the items are taken as the percentiles of thestandardized gaussian
distribution. The latent trait is simulated by a multinormal centered distribution, with
the identity matrix as covariance matrix.

800 replications are simulated of each case.

Case/ Raschfit-Fast MSP HCA/CCPROX
ScenarioCorrect Medium BadCorrect Medium Bad UnspecifiedGood Medium Bad
A I 781 19 - 0 0 - 800 0 800 -

II 800 0 - 26 221 - 553 0 800 -
III 800 0 - 800 0 - 0 800 0 -
IV 800 0 - 800 0 - 0 800 0 -

B I 625 0 175 0 0 0 800 0 775 25
II 800 0 0 23 73 0 704 2 789 9
III 800 0 0 800 0 0 0 799 1 0
IV 800 0 0 800 0 0 0 800 0 0

C I 562 0 238 0 0 0 800 0 767 33
II 799 0 1 29 97 0 674 1 786 13
III 800 0 0 800 0 0 0 800 0 0
IV 800 0 0 800 0 0 0 800 0 0

D I 469 0 331 0 0 0 800 0 755 45
II 712 0 88 22 107 0 671 0 770 30
III 800 0 0 800 0 0 0 795 5 0
IV 800 0 0 780 0 20 0 800 0 0

E I 259 0 541 0 0 0 800 0 733 67
II 186 0 614 30 63 0 0 0 753 47
III 187 0 613 495 0 305 0 767 32 1
IV 702 0 98 1 0 799 0 800 0 0

Tableau 6.Results of the simulations concerning the comparison of
Raschfit-Fast, MSP and HCA/CCPROX
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0.7.2. Discussion

Raschfit-Fast allows obtaining good results as soon as the correlation between the
two component of the latent trait is low, and/or the discriminating power of the items
is high. When the set of items is unidimensional, Raschfit-Fast allows detecting that
there is no perturbant item. Indeed, the quality of the results strongly decreases with
the increasing of the correlation between the two components of the latent trait.

MSP produces full of unspecified results, notably when the discriminating powers
of the items is low (inferior or equal to 1). In the others cases, the results are correct,
except if the discriminating powers of the items are too high(superior to 1) and if the
correlation between the two components of the latent trait are too correlated (coeffi-
cient superior to 0.4).

HCA/CCPROX produces good results when the discriminating powers of the items
are high (superior to 1) and else, medium results.

Raschfit-Fast, in these cases where the real model is close ofthe MMSRM, the
more powerfull procedures among these three ones, notably when the conditions are
less favourable : high correlation between the components of the latent traits and/or
low discriminating power of the items.

0.8. The Stata module "Raschfit"

We propose a Stata module named -raschfit- to realize the Raschfit procedure. By
default, this module run Raschfit-Fast. The Stata module -raschfit- can be downloaded
from the FreeIRT Project at http ://freeirt.free.fr.

The syntax of -raschfit- is simple. The user indicates the names of the used items.
By default, MSP is run under the items to order them among a negative order, and the
two first items selected by MSP are considered as the initial kernel of the scale. The
others items are ordered with MSP from the last item selectedby MSP to the first one
(except the kernel).

It is possible to modify the method to order the items with the"itemsorder" option
which can be "msp" (by default), "mspinv" (the kernel is selected from the same way
than by default, but the others items are taken in the inverseorder) and "order" which
orders the items in the same order than this one defined by the user.
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The number of sub-scales to build is defined by the "nbscales"option (1 by de-
fault). The size of the kernel of the first sub-scale can be defined by the "kernel" option
(2 by default). Last, it is possible to run the original version of Raschfit in adding the
"nofast" option.

With the syntax of the Stata manual, the syntax of the -raschfit- module is :

. raschfit varlist [, kernel(#) nbscales(#) itemsorder(keyword) nofast]

0.9. Conclusion

A new procedure named Raschfit had been proposed in a preceeding paper It al-
lows selecting the items which fit a Rasch model. This procedure is based on the fit
of the data to a multidimensional Item Response Model, instead of on the correlations
between items (as in the factor analysis) or on the properties of the items (as in the
Mokken Scales Procedure - MSP).

Raschfit is more performant than the existing procedures which are based on uni-
dimensionality of the items, especially when the multidimensional model underlying
the data is close of this one used in the procedure. The main drawback of Raschfit is
the time of computing (until several hours, even the number of items is small). A new
version of this procedure, named Raschfit-Fast, is proposedin this paper. Raschfit-Fast
allows estimating more fastly the likelihood of the models,and considerably reduces
the time of computing, even if already existing procedures (MSP for example) still are
faster. This adaptation of Raschfit give similar results compared to the former version,
if the latent traits underlying to each set of items have a lowcorrelation.

This is encouraging results for this type of procedure, based on the fit to IRM, even
new improvements are necessary to reduce the rates of bad results.
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