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SUMMARY

Sequential methods allowing for early stopping of clinical trials are widely used in various therapeutic
areas. These methods allow for the analysis of different types of endpoints (quantitative, qualitative,
time to event) and often provide, in average, substantial reductions in sample size as compared with
single-stage designs while maintaining pre-specified type I and II errors. Sequential methods are also used
when analysing particular endpoints that cannot be directly measured, such as depression, quality of life,
or cognitive functioning, which are often measured through questionnaires. These types of endpoints are
usually referred to as latent variables and should be analysed with latent variable models. In addition, in
most clinical trials studying such latent variables, incomplete data are not uncommon and the missing data
process might also be non-ignorable. We investigated the impact of informative or non-informative missing
data on the statistical properties of the double triangular test (DTT), combined with the mixed-effects
Rasch model (MRM) for dichotomous responses or the traditional method based on observed patient’s
scores (S) to the questionnaire. The achieved type I errors for the DTT were usually close to the target
value of 0.05 for both methods, but increased slightly for the MRM when informative missing data were
present. The DTT was very close to the nominal power of 0.95 when the MRM was used, but substantially
underpowered with the S method (reduction of about 23 per cent), irrespective of whether informative
missing data were present or not. Moreover, the DTT using the MRM allowed for reaching a conclusion
(under H0 or H1) with fewer patients than the S method, the average sample number for the latter
increasing importantly when the proportion of missing data increased. Incorporating MRM in sequential
analysis of latent variables might provide a more powerful method than the traditional S method, even in
the presence of non-informative or informative missing data. Copyright q 2007 John Wiley & Sons, Ltd.
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4890 V. SÉBILLE, J.-B. HARDOUIN AND M. MESBAH

INTRODUCTION

Sequential methods allowing for early stopping of clinical trials in case of beneficial, harmful,
or no treatment effect [1, 2] are widely used in various therapeutic areas. These methods allow
for the analysis of different types of endpoints (quantitative, qualitative, and time to event) and
often provide, in average, substantial reductions in sample size as compared with single-stage
designs (SSDs) while maintaining pre-specified type I and II errors. All these sequential methods
are usually performed on endpoints that can be directly observed and quantified, such as CD4 cell
counts, success rates, or overall survival. They are also used as such when analysing particular
endpoints that cannot be directly observed, such as depression, quality of life (QoL), fatigue, or
cognitive functioning, for instance. In practice, such endpoints are usually evaluated using self-
assessment questionnaires which consist of a set of questions often called items, whose responses
are frequently combined to give scores. The common practice is to work on these scores which
are expected to accurately represent the endpoint being measured and are generally assumed to be
normally distributed, which is not always the case. As a matter of fact, these types of endpoints are
usually referred to as being latent variables and should more probably be modelled and analysed
with the so-called latent variable models [3, 4]. Indeed, latent variable models are specifically aimed
at the analysis of latent variables that can be considered as random variables whose realizations
are not observed in contrast with other variables [4]. Such models include Item Response Theory
(IRT) models, often formulated as generalized linear mixed models [5, 6], which enable to model
relationships between observed and latent variables. Some of the commonly used IRT models are
the Rasch model or the Birnbaum model for dichotomous responses [3, 7], and the Rating Scale
model or the Partial Credit model for polytomous responses [8, 9].

To our knowledge, specific sequential methods allowing for the analysis of latent variables
have not yet been much developed despite the growing use of self-reported questionnaires in
clinical trials aimed at measuring and evaluating many different latent variables such as QoL in
cancer trials, dementia in Alzheimer’s trials, etc. The benefit of combining sequential analysis
and IRT modelling using mixed Rasch models for binary items has already been studied in
the context of non-comparative clinical trials and seems very promising [10]. The statistical
properties of two well-known sequential methods, namely the Sequential Probability Ratio Test
and the Triangular Test [11–13], were studied and compared using IRT models and traditional
scores methods in simulation studies. Incorporating IRT models in sequential analysis of latent
variables seemed to be a more powerful method than the method based on observed scores, and
also seemed to allow for early stopping with fewer patients. However, these simulation studies
only investigated non-comparative clinical trials and did not incorporate any missing data, which is
unfortunately unrealistic in most clinical trials where incomplete data are not uncommon. Moreover,
the process causing the omission of data might not be at random [14] and might also have some
influence on the statistical properties of the sequential procedure being used in combination with
IRT models.

In this paper, we investigated the impact of informative or non-informative missing data on
the statistical properties of a group sequential method often used in comparative clinical trials,
the double triangular test (DTT), combined with a mixed-effects IRT model, the mixed Rasch
model for dichotomous responses. The statistical properties of the DTT either combined with the
mixed-effects IRT model or using the observed scores were assessed and compared by simulations
regarding the type I error, power, and average sample number (ASN).
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THE RASCH MODEL

The mixed Rasch model

The basic assumption for IRT models and in particular for the Rasch model is the unidimensionality
property stating that the responses to the items of a questionnaire are influenced by the underlying
concept we are trying to measure (e.g. QoL, fatigue, etc.), often called latent trait and denoted by
�, and often considered as a random variable.

Consider that N patients have answered a questionnaire containing J dichotomous items. Let
Xi j be the random variable representing the response of patient i to item j with realization xi j ,
and �i be the realization of the latent trait for this patient. The mixed Rasch model postulates three
assumptions [3]:

(1) Given �i , the response variables Xi1, Xi2, . . . , Xi J , are mutually independent (local inde-
pendence).

(2) The probability pi j of response of patient i to item j , also called the item response function
of the j th item, is given by

pi j = P(Xi j = xi j/�i ; � j ) = f (xi j/�i ; � j ) = exp{(�i − � j )xi j }
1 + exp(�i − � j )

where � j is the parameter associated with item j and is often called the difficulty parameter
for item j ( j = 1, . . . , J ).

(3) The variables �1, �2, . . . , �N are mutually independent with a common underlying distri-
bution G which is often assumed to be Gaussian.

In contrast with other IRT models, in the Rasch model, a patient’s total score, Si = ∑J
j = 1 Xi j , is

a sufficient statistic for the latent trait �i .

Identifiability constraints and estimation of the parameters

Identifiability of the model can be ensured by putting one constraint on the parameters.
Usually, we assume that the mean of the latent trait is 0 or that the sum of the item parameters∑

j � j = 0.
Let � = (�1, �2, . . . , �J ). The marginal likelihood of the mixed Rasch model is given by

L(�, �, �2/x)=
N∏
i=1

∫
�

J∏
j=1

P(Xi j = xi j/�i ; � j ) · G(�i/�, �2) d�i

where G(./�, �2) is the Gaussian distribution function with mean � and variance �2.
The person parameters (latent traits) can be jointly estimated with the item parameters by

marginal maximum likelihood (MML) estimation obtained from integrating out the random effects.
The MML estimators that are obtained are asymptotically efficient [3, 15, 16].
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SEQUENTIAL ANALYSIS

Observed scores

Consider a comparative clinical trial that involves the comparison of responses to a self-assessment
questionnaire aimed at measuring QoL or fatigue, for instance, in two parallel treatment groups
(group 1 and group 2). Let us assume that we are working on summation scores obtained from the
responses and that they follow some distribution assumed to be Gaussian with unknown parameters
�1 (in group 1) and �2 (in group 2) and common �2. Let the difference between treatment groups
be parameterized as �= (�2 − �1)/�.

The test statistics Z and V

We are testing the null hypothesis H0: �= 0 against the two-sided alternative H1: � �= 0 with
H+
1 : �>0 and H−

1 : �<0. The log-likelihood can be expressed according to both independent
samples, and its derivatives can be used to derive the test statistics Z and V , both evaluated under
the null hypothesis. The test statistic Z is the efficient score for � depending on the observed
scores, and the test statistic V is Fisher’s information for �. Their expressions for a normally
distributed endpoint are given in Appendix and details of the computations are described at length
by Whitehead [1].
Latent variables

We shall now consider the latent case, i.e. the case where the latent trait �ig of each patient i
is unobserved in each treatment group g (g= 1, 2). Let us assume that n1 + n2 data have been
gathered so far in the two treatment groups and that the data form two separate sequences of
independent observations: (�11, �21, . . . , �n11) ∼ f�1(�1, �) and (�12, �22, . . . , �n22) ∼ f�2(�2, �),
where �1 and �2 ∈ � and where � is an unknown common nuisance parameter (possibly vector
valued). Following Whitehead’s notations [1], let �= (�2−�1)/2 be the parameter of interest and
the nuisance parameter be made up of �= (�1 +�2)/2 and �. Hence, �1 = �−� and �2 = �+�
and �1 ∼ f�1(� − �, �) and �2 ∼ f�2(� + �, �). The hypotheses we are testing can be expressed
as H0: �1 =�2 against H1: �1 �=�2 or as H0: �= 0 against H1: � �= 0. The log-likelihood of
�, �, and � can be written as

l(�,�, �) = l(1)(�1, �) + l(2)(�2, �)

Assuming a Rasch model for patients’ item responses, and � = (�2, �1, . . . , �J ), where �2 is the
common variance of the latent traits �1 and �2 in each treatment group and �1, . . . , �J are the J
item parameters, we can write

l(g)(�g, �
2, �1, . . . , �J ) =

ng∑
i=1

log

{∫
f�g (�g, �

2)
∏
j

e(�ig−� j )xijg

1 + e(�ig−� j )
d�ig

}
, g= 1, 2

The test statistics Z and V can be derived in the following way under H0:

Z = �l
��

(�, �∗, �2∗, �∗
1, . . . , �

∗
J )

∣∣∣∣
�=0

and V =− �2l
��2

(�, �∗, �2∗, �∗
1, . . . , �

∗
J )

∣∣∣∣∣
�=0
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where �∗ and �∗ = (�2∗, �∗
1, . . . , �

∗
J ) are the maximum likelihood estimates of � and � under the

assumption that both series of data come from the same distribution.
Since l(�,�, �) = l(1)(�1, �) + l(2)(�2, �) and �1 = � − � and �2 = � + �, we can write

�l
��

(�,�, �) = �l(1)

��
(�1, �) + �l(2)

��
(�2, �)

= ��1

��
· �l(1)

��1
(�1, �) + ��2

��
· �l(2)

��2
(�2, �)

= �l(2)

��2
(�2, �) − �l(1)

��1
(�1, �)

Hence, under H0(�= 0):

Z = �l(2)

��2
(�∗, �2∗, �∗

1, . . . , �
∗
J ) − �l(1)

��1
(�∗, �2∗, �∗

1, . . . , �
∗
J )

The test statistic V can be approximated by the following expression [1] for planning purposes
when the two samples are large, of about the same size and when � is small:

V = − �2l
��2

(�,�∗, �2∗, �∗
1, . . . , �

∗
J )

∣∣∣∣∣
�=0

= −�2l(2)

��2
2

(�∗, �2∗, �∗
1, . . . , �

∗
J ) − �2l(1)

��2
1

(�∗, �2∗, �∗
1, . . . , �

∗
J )

Estimation of the test statistics Z and V is done by maximizing the marginal likelihood obtained
from integrating out the random effects. Quasi-Newton procedures can be used to maximize the
likelihood, along with adaptive Gaussian quadrature to integrate out the random effects [17].
The double triangular test

The DTT (Figure 1) uses a sequential plan defined by two perpendicular axes [1]. The horizontal
axis corresponds to the test statistic V , which represents the quantity of information accumulated
since the beginning of the trial (Fisher’s information for the parameter of interest). The vertical
axis corresponds to the test statistic Z , which represents the benefit as compared with the null
hypothesis (efficient score for the parameter of interest). For the DTT, two single triangular tests,
symmetrical about the V axis, are combined: the continuation region is situated inside of the
two triangles, the region of non-rejection of the null hypothesis is situated between the two inner
boundaries, the region of rejection of the null hypothesis in favour of H−

1 is situated beneath the
lower outer boundary, and the region of rejection of the null hypothesis in favour of H+

1 is situated
above the upper outer boundary. The boundaries depend on the statistical hypotheses (values of
the expected treatment benefit, 	 and 
) and on the number of subjects included between two
analyses. They can be adapted at each analysis when this number varies from one analysis to the
other, using the ‘Christmas tree’ correction [1]. At each analysis, Z and V are computed from all
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Figure 1. Stopping boundaries based on the double triangular test (DTT) for 	= 0.05 and 
 = 0.025 with
an effect size (reference improvement)= 0.5.

the available data and Z is plotted against V , thus defining a sample path. The trial is continued
as long as the sample path remains in the continuation region. A conclusion is reached as soon as
the sample path crosses one of the boundaries of the test. In practice, a computer software called
PEST [18] is available and can be used for the planning, monitoring, and analysis of sequential
comparative clinical trials.

Simulations

The latent trait � was considered as a random variable following a normal distribution: � ∼N(0, 1),
and �i represents the latent trait of the i th patient. For each patient, the probability of responding
to each item was computed according to the Rasch model:

pi j = P(Xi j = xi j/�i ; � j ) = exp{(�i − � j )xi j }
1 + exp(�i − � j )

where xi j = 0 for a negative response and xi j = 1 for a positive response. In order to assess the
impact of model misspecification, the probability of responding to each item was also computed
according to the Birnbaum model, which is a generalization of the Rasch model:

pi j = P(Xi j = xi j/�i ; � j , a j ) = exp{a j (�i − � j )xi j }
1 + exp{a j (�i − � j )}

where a j is called the discriminating power.
Three missing data mechanisms have been described by Rubin [14]: missing completely at

random (MCAR), missing at random (MAR), and missing not at random (MNAR). For instance,
in case of a self-reported QoL questionnaire, data can be considered MCAR if the probability of

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4889–4904
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having a missing data (missing response on one or more items, for instance) is independent of
the patient’s QoL. Data will be considered MAR if the probability of missing data may depend
on the previous patient’s QoL but not on its present or future (unobserved) QoL. In contrast, data
will be considered MNAR if the probability of missing data depends on the patient’s present and
future (unobserved) QoL. Methods for identifying the different types of missingness and hence
determining appropriate methods of analysis have been discussed elsewhere in detail, especially
in the longitudinal setting [19–22].

Data were simulated mainly according to two different mechanisms: MCAR andMNAR. Another
latent variable denoted by � was used, corresponding to non-response propensity, which represents
the tendency of not responding, varying between individuals. This latent variable may be influenced
by the patient’s latent trait � (QoL, fatigue, pain, anxiety, etc.) and may thus involve an informative
non-response framework corresponding to MNAR data. To simulate the missing values, we assumed
that each patient had a non-response propensity to each item represented by the latent variable �
that followed a normal distribution with zero mean and variance unity. The correlation coefficient
between � and � was denoted as �. Let  be the expected rate of missing values for each item and
i be the probability for the i th patient to have a missing value to each item. In case of missing
data, this probability was assumed to have a lower bound equal to 1 per cent and to be centred on
 (for  between 2 and 50 per cent).

Let

�∗
i =

⎧⎪⎨
⎪⎩

−2 if �i�−2

�i if −2<�i<2

2 if �i�2

and i = �∗
i ( − 0.01)

2
+ 

According to the value of �, the missing values will be considered as being non-informative
(MCAR) or informative (MNAR): for �= 0, the data will be MCAR, for � �= 0, the data will not
be considered as MCAR anymore but will be considered MNAR. We assumed that a patient with
a low level on the latent trait (low level of QoL, for instance) had a higher propensity of absence
of response to the items, so � was assumed to be �0.

A thousand comparative clinical trials were simulated. The latent trait in the control group
�1 was assumed to follow a normal distribution with mean �1 = 0 and variance �2 = 1, and the
latent trait in the experimental group �2 was assumed to follow a normal distribution with mean
�2 = �1+d and same variance. The trial involved the comparison of the two hypotheses: H0: d = 0
against H1: d �= 0. We assumed that a five-item scale (that could represent one of the dimensions
of a questionnaire, like for, instance, physical, social, or emotional dimension) was used. For the
Rasch and the Birnbaum models, the corresponding item parameters were assumed to be forming
a part of a calibrated item bank [23]: �1 =−1.0, � = −0.5, �3 = 0.0, �4 = 0.5, and �5 = 1.0. For
the Birnbaum model, the parameters a j were randomly drawn in the interval [0.5–2.0] with a
median of 1. Data were simulated with four different values for �: � = 0 (MCAR data), −0.4,
−0.7, and −0.9 (MNAR data). The probability of non-response for each item is represented in
Figures 2(a)–(d) as a function of the latent trait �, for different values of � (each dot represents
an individual).

We compared the use of mixed Rasch modelling methods with summation scores methods using
the DTT. The sequential analyses were performed for every 40 included patients, the effect size
was equal to d = 0.5 under H1, and 	 = 
= 0.05 for all simulations.
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Figure 2. Probability of having a missing value to each item as a function of the latent trait � for
different values of the correlation coefficient � between � and the non-response propensity � for  = 5

per cent: (Panel a) �= 0; (Panel b) � =−0.4; (Panel c) � = −0.7; and (Panel d) � =−0.9.

SIMULATION RESULTS

Table I (data simulated under a Rasch model) shows the type I error and the power for the DTT
for different proportions  of missing data and for different values of the correlation coefficient �
between the latent trait � and the non-response propensity �, using the method based on observed
scores or the mixed Rasch model.

The type I errors were usually close to the target value of 0.05 for both methods when �10 per
cent, but slightly increased when = 15 or 20 per cent for the mixed Rasch model. Informative
data (� �= 0) did not seem to affect the significance level of the method based on observed scores,
whereas it was somewhat increased for the mixed Rasch model (from 0.053 when � = 0 to 0.061
when �=−0.9, on average). The DTT was very close to the nominal power of 0.95 when the
mixed Rasch model was used, but substantially underpowered when the method based on observed
scores was used. Indeed, for the method based on observed scores, as compared with the target
power value of 0.95, there were decreases in power of approximately 23 per cent for all values of
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Table I. Type I error and power for the double triangular test (DTT) using the method
based on observed scores or the mixed Rasch model for various proportions  of
missing data and for different values of the correlation coefficient � between the latent
trait � and the non-response propensity � (nominal 	= 
 = 0.05, five-item scale, 1000

simulations, data simulated under a Rasch model).

Type I error/Power

 � Scores Rasch model

0 0 0.040/0.712 0.051/0.952

0 0.053/0.708 0.057/0.946
0.02 −0.4 0.064/0.708 0.051/0.946

−0.7 0.055/0.714 0.069/0.949
−0.9 0.049/0.703 0.056/0.936

0 0.052/0.734 0.046/0.943
0.04 −0.4 0.049/0.711 0.038/0.960

−0.7 0.055/0.719 0.065/0.952
−0.9 0.042/0.757 0.057/0.966

0 0.050/0.732 0.042/0.943
0.06 −0.4 0.039/0.754 0.045/0.948

−0.7 0.049/0.736 0.048/0.962
−0.9 0.054/0.708 0.061/0.949

0 0.042/0.749 0.048/0.947
0.08 −0.4 0.041/0.765 0.062/0.949

−0.7 0.040/0.756 0.050/0.947
−0.9 0.052/0.755 0.058/0.963

0 0.046/0.736 0.046/0.949
0.10 −0.4 0.043/0.744 0.055/0.945

−0.7 0.056/0.708 0.063/0.968
−0.9 0.045/0.728 0.064/0.976

0 0.046/0.769 0.068/0.932
0.15 −0.4 0.039/0.754 0.052/0.955

−0.7 0.043/0.725 0.057/0.956
−0.9 0.028/0.713 0.058/0.972

0 0.049/0.796 0.068/0.946
0.20 −0.4 0.045/0.761 0.062/0.960

−0.7 0.045/0.730 0.063/0.981
−0.9 0.051/0.695 0.072/0.975

 and � considered. More precisely, concerning the  and � effects, the power seemed to increase
slightly with , the increase depending on the level of � for both methods, but in a different way:
the increase was observed for the method based on observed scores when � = 0 or −0.4 (the
power increased on average, from 0.712 when  = 0 per cent to 0.779 when  = 20 per cent for
the method based on observed scores, and from 0.952 when  = 0 per cent to 0.953 when  = 20
per cent for the mixed Rasch model), whereas it was observed for the mixed Rasch model when

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4889–4904
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Table II. Sample size for the single-stage design (SSD) and average sample number (ASN)
required to reach a conclusion under H0 and H1 for the double triangular test (DTT) using
the method based on observed scores or the mixed Rasch model for various proportions  of
missing data and for different values of the correlation coefficient � between the latent trait
� and the non-response propensity � (nominal 	 = 
 = 0.05, effect size= 0.5, five-item scale,

1000 simulations, data simulated under a Rasch model).

DTT∗ Scores Rasch model

 � SSD H0/H1 H0/H1 H0/H1

0 0 208 149/125 149/154 148/125

0 208 149/125 169/171 154/129
0.02 −0.4 208 149/125 168/173 157/132

−0.7 208 149/125 169/175 155/130
−0.9 208 149/125 170/172 155/130

0 208 149/125 184/183 156/131
0.04 −0.4 208 149/125 183/185 156/130

−0.7 208 149/125 183/181 159/128
−0.9 208 149/125 185/184 159/127

0 208 149/125 199/191 158/132
0.06 −0.4 208 149/125 198/190 157/130

−0.7 208 149/125 196/192 161/127
−0.9 208 149/125 198/191 159/131

0 208 149/125 213/198 160/135
0.08 −0.4 208 149/125 210/197 158/130

−0.7 208 149/125 210/200 158/129
−0.9 208 149/125 212/196 159/127

0 208 149/125 232/225 161/136
0.10 −0.4 208 149/125 231/220 161/129

−0.7 208 149/125 233/222 164/130
−0.9 208 149/125 233/222 161/125

0 208 149/125 274/253 167/139
0.15 −0.4 208 149/125 275/247 169/135

−0.7 208 149/125 273/248 166/131
−0.9 208 149/125 275/248 165/127

0 208 149/125 332/287 172/144
0.20 −0.4 208 149/125 333/286 174/137

−0.7 208 149/125 333/285 174/127
−0.9 208 149/125 330/286 172/128

∗ASN for the DTT for a normally distributed endpoint provided by PEST software.

� =−0.7 or −0.9 (on average, from 0.712 when  = 0 per cent to 0.713 when  = 20 per cent for
the method based on observed scores and from 0.952 when  = 0 per cent to 0.978 when  = 20
per cent for the mixed Rasch model).

Table II (data simulated under a Rasch model) shows the ASN of the number of patients required
to reach a conclusion under H0 and H1 for the DTT for different proportions  of missing data and
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for different values of the correlation coefficient � between the latent trait � and the non-response
propensity � using the method based on observed scores or the mixed Rasch model. We also
computed for comparison purposes the number of patients required by a two-sided SSD and the
approximate ASN for the DTT computed with PEST software [18] when a normally distributed
endpoint is assumed when planning the trial. As expected, the ASNs were smaller for the DTT
as compared with the sample size required by the SSD using either method (observed scores or
mixed Rasch model) when no missing data were present ( = 0), and similar to the ASN computed
using PEST software for the DTT for a normally distributed endpoint under H0. The same feature
was also observed under H1, except for the method based on observed scores, which displayed a
higher ASN than the others (154 instead of 125). Moreover, the ASNs increased as the proportion
 of missing data increased for almost all values of �, particularly when using the method based on
observed scores. Indeed, for this method using the DTT, as compared with the number of patients
required by the SSD, as  increased from 0 to 20 per cent, the ASN under H0 (H1) ranged from a
decrease in the number of patients required to reach a conclusion of −28 per cent (−26 per cent)
to an increase in this number of +60 per cent (+38 per cent), for all values of �. In contrast,
for the method based on the mixed Rasch model, as compared with the SSD, when  increased
from 0 to 20 per cent of missing data, the decreases in sample size obtained with the DTT under
H0 diminished only slightly, ranging from −29 to −17 per cent. Under H1, the effect of  was more
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Figure 3. Type I error probability achieved by the single-stage design (SSD) using the observed scores
(empty circles) or the mixed Rasch model (full squares) as a function of the proportion  of missing
data for different values of the correlation coefficient � between the latent trait � and the non-response
propensity � (data simulated under the Birnbaum model): (Panel a) � = 0; (Panel b) �= −0.4; (Panel c)
� = −0.7; and (Panel d) �= −0.9. The 95 per cent confidence intervals were calculated using the normal

approximation to the binomial distribution.
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Figure 4. Power achieved by the single-stage design (SSD) using the observed scores (empty
circles) or the mixed Rasch model (full squares) as a function of the proportion  of missing data
for different values of the correlation coefficient � between the latent trait � and the non-response
propensity � (data simulated under the Birnbaum model): (Panel a) �= 0; (Panel b) � =−0.4;
(Panel c) � =−0.7; and (Panel d) �= −0.9. The 95 per cent confidence intervals were calculated

using the normal approximation to the binomial distribution.

marked when �= 0 or � =−0.4, where the decreases in sample size obtained with the DTT varied
from −40 to −32 per cent as  increased from 0 to 20 per cent, whereas it remained stable when
� =−0.7 or �=−0.9 at about −38 per cent for all values of .

Correspondingly, as compared with the ASN calculated for the DTT for a normally distributed
endpoint using PEST software, for the method based on observed scores, as  increased from 0 to
20 per cent, the increase in ASN under H0 (H1) ranged from no increase (+23 per cent) to +123
per cent (+129 per cent) for all values of �. In contrast, for the method based on the mixed Rasch
model, as compared with the ASN calculated for the DTT for a normally distributed endpoint
using PEST software, the increase in ASN under H0 (H1) ranged from no increase (no increase)
to +38 per cent (+13 per cent for �= 0 or � =−0.4 and +2 per cent for � = −0.7 or � = −0.9),
as  increased from 0 to 20 per cent.

Figures 3 and 4 (data simulated under a Birnbaum model) show type I error probability and
power, respectively, achieved by the SSD using the observed scores or the mixed Rasch model as
a function of the proportion  of missing data for different values of the correlation coefficient �
between the latent trait � and the non-response propensity �. The significance level achieved by the
DTT seemed to be unaffected with the method based on observed scores, whereas it was increased
when the mixed Rasch model was used for all values of  and � (the mean type I error was 0.098
with the latter and 0.047 with the former), the increase being more marked when � =−0.9. The
DTT was a bit underpowered when the mixed Rasch model was used (0.929 on average), and

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4889–4904
DOI: 10.1002/sim



SEQUENTIAL ANALYSIS OF LATENT VARIABLES WITH MISSING DATA 4901

still substantially underpowered when the method based on observed scores was used (0.741 on
average), the power slightly increasing for both methods with  (especially when � = 0 or −0.4
for the method based on observed scores) and with � for the mixed Rasch model. The ASNs
displayed the same features as the ones already observed when the data were simulated under the
Rasch model (data not shown): an important increase was observed as  increased, mostly for the
method based on observed scores, the increase being more moderate for the mixed Rasch model.

DISCUSSION

We investigated the impact of informative or non-informative missing data on the statistical pro-
perties of the DTT, combined with a mixed-effects IRT model, the mixed Rasch model or the
traditional approach based on observed scores.

Simulation studies showed that for the DTT: (i) the type I error 	 was correctly maintained
for both methods when non-informative data were present (� = 0) for almost all values of the
proportion  of missing data, whereas it was increased with |�| for the mixed Rasch model; (ii) the
power of the DTT was accurately maintained for the mixed Rasch model, but it was substantially
underpowered with the method based on observed scores for all values of  and � even if a
slight increase was observed for both methods as  increased; and (iii) as expected using group
sequential analysis, both methods allowed substantial reductions in ASNs as compared with the
SSD, the largest reduction being observed with the mixed Rasch model; the reduction in sample
size diminished importantly mostly for the method based on observed scores as  increased and
the benefit of using the DTT was completely lost for this method, the ASN being similar or more
often larger than the sample size required by the SSD under both H0 and H1. Finally, model
mis-specification for the Rasch model (when data were simulated with a Birnbaum model) had an
impact mostly on the type I error 	, but it was more moderate on the power. Thus, this illustrates
that mixed Rasch models should be used only when they provide a good fit to the data and that
other models should be investigated otherwise.

The inflation of the type I error 	 for the mixed Rasch model in the presence of informative
data (� �= 0) and the important loss in power of the DTT based on the observed scores method as
compared with the mixed Rasch model might be explained by looking at the distributions of the test
statistics Z and V computed using both methods. According to asymptotic distributional results,
we might expect the sequences of test statistics (Z1, Z2, . . . , ZK ) to be multivariate normal, with
Zk ∼N(ES ∗ Vk, Vk), where ES denotes the effect size (equal to 0.5 in the simulations under H1),
for k = 1, 2, . . . , K analyses [1, 2]. We looked at the distribution of the standardized test statistics

Z ′
4 = Z4 − (ES ∗ V4)√

V4
∼N(0, 1)

(corresponding to the fourth sequential analysis performed on 160 patients) under H0 and H1
computed using the method based on observed scores or the mixed Rasch models for  = 0 and
 = 8 per cent for � = 0, −0.4, and −0.9. The normality assumption for Z ′

4 was not rejected using
a Kolmogorov–Smirnov test, whatever the method used to compute the test statistics, for all values
of  and �. However, the test statistics Z ′

4 computed using the mixed Rasch model increased with
� in absolute value, its normal distribution being centred above zero when |�|>0 (at 0.12 for
� =−0.9, for instance), thus explaining to a certain extent the inflation of the type I error 	 in
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the presence of informative data for this model. Furthermore, concerning the power of the DTT,
the standardized test statistic Z ′

4 computed using the method based on observed score was always
significantly lower than the standardized test statistic Z ′

4 computed using the method based on
the mixed Rasch model for all values of  and � considered, its sample mean being significantly
lower than zero under all circumstances. In addition, the moderate increase in power observed as
 increased, especially with the method based on observed scores, can be directly related to the
inflation of the corresponding ASNs and number of sequential analyses to be performed (from
about four sequential analyses when = 0 per cent to more than eight when  = 20 per cent).

The missing data mechanism simulated with the use of the correlation coefficient � between
the latent trait � and the propensity of non-response � did seem to alter the statistical properties
of the testing procedures, especially in terms of significance level for the mixed Rasch model.
It is well known that performing analyses on informative data without incorporating the missing
data process can also lead to bias in treatment effect estimates [19]. Several methods have been
proposed to model the missing data mechanism [20, 24], including, more recently, a method based
on IRT modelling [25], where possible bias in the item parameter estimates was investigated by
simulating about the same informative data mechanisms as ours. The bias could sometimes be
important and could be reduced by taking into account the missing data mechanism modelled with
a mixed-effects IRT model. This type of strategy could also be incorporated in a group sequential
analysis setting, and more work is needed.

Finally, we worked only on binary items, whereas polytomous items appear more frequently
in most questionnaires used in clinical trial practice. Other mixed-effects IRT models such as the
Partial Credit model or the Rating Scale model [8, 9] might be more appropriate in this context
and are currently being investigated.

It has been reported that latent variable models might provide more accurate assessment of health
status as compared with observed scores [26, 27]. Hence, if an IRT model, such as the mixed Rasch
model for dichotomous responses, shows a good fit to the data, incorporating mixed-effects IRT
models in sequential analysis of latent variables will provide a more powerful method to detect
therapeutic effects than the traditional method based on observed scores, even in the presence of
non-informative or informative missing data.

APPENDIX

The test statistics Z and V for a normally distributed endpoint are given by

Z = n1n2
(n1 + n2) · D (s̄2 − s̄1) and V = n1n2

(n1 + n2)
− Z2

2(n1 + n2)

in which:

• ng is the cumulated number of patients (since the beginning of the trial) in group g (g= 1, 2),
• s̄g = ∑ng

j=1 sg j/ng where sg j denotes the observed scores of patient j in group g,
• D is the maximum likelihood estimate of � under the null hypothesis:

D =
√

Q

n1 + n2
−

(
R

n1 + n2

)2
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with

Q =
n1∑
j=1

s21 j +
n2∑
j=1

s22 j and R =
n1∑
j=1

s1 j +
n2∑
j=1

s2 j

Details of the computations are described at length by Whitehead [1].
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